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0.1 Notation and convention

The metric convention is messy in theoretical physics. Here we adopt the convention that

ηµν =


+1

−1

−1

−1

 (1)

In this lecture we just consider the quantum field theory in flat spacetime equipped with Minkowski metric.
And we adopt the Einstein summation convention.
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Chapter 1

Introduction

1.1 Background

We needs some framework to describe elementary particles and their characters. QFT is quantum mechan-
ical theory. What is quantum mechanical? The theory is based on the Hilbert space and the observable
are the Hermitian operators acting on this space. However, we don’t have like H0 = − ∆

2m terms, which is
non-relativistic. Relativistic QFT should satisfies two properties:

• Allow for particle creation/annihilation

• Lorentz invariance

Then comes to the two elementary questions:

• What quantum fields are allowed?

• What formalism we should use?

• How to extract physics?

A theory is said to be solve if we could solve the energy spectrum of the Hamiltonian. We will also consider
the scattering problem using the perturbation theory. The computation method is called the Feynman
diagram. The tree level diagram is as the following shown.

k

γ

e−

e+ µ+

µ− (1.1)

The loop diagram includes divergent integrals, which leads to the renormalization program.

1.2 Incorporating special relativity

We want to combine quantum mechanics and special relativity, which means that the Lorentz group must
act on the Hilbert space. This guides us to study the representation theory, especially the representation
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of Lorentz group.

1.3 Incorporating the creation and annihilation of particles

1.3.1 Fock space

We denote Hn as the n-particle Hilbert space.

Example 1.1. If we consider Free boson of a given mass m. The Hilbert space series is

H0 = C = 〈|0〉〉

H1 =

{
L2(R3) normalizable

〈|pµ〉 |p2 = m2, p0 > 0〉 non-normalizable

H2 =

{
S
(
L2(R3 ⊗ L2(R3))

)
〈|pµ1 , p

µ
2 〉 |p2i = m2, p0i > 0〉

(1.2)

where S denotes the symmetrization. The Fock space is the direct sum of these spaces

F =

∞⊕
n=0

Hn (1.3)

Definition 1.1. We define the inner product of this space, (·, ·) : F × F → C, which satisfies

• (·, ·)|Hn×Hn
:= (·, ·)|Hn

• (·, ·)|Hm×Hn
= 0 if m 6= n

Normalization of the inner product:

H0 : 〈0|0〉 = 1

H1 : 〈p|k〉 = 2ωp(2π)
3δ(3)(~p− ~k), ωp =

√
m2 + ~p2 = p0

. . .

Hn = 〈k1, . . . , kn|p1, . . . , pn〉 =
n∏
i=1

2ωki
∑
δ∈Sn

∏
j=1

(2π)3δ(3)(~pj − ~kδ(i))

(1.4)

For example,

〈p1, p2|k1, k2〉 = 2ωp12ωp2

[
(2π)3δ(3)( ~k1 − ~p1)(2π)

3δ(3)(~k2 − ~p2) + (2π)3δ(3)( ~k1 − ~p2)(2π)
3δ(3)(~k2 − ~p1)

]
(1.5)

1.3.2 Creation and annihilation operators

If we fix the mass m of the particle, for any ~p ∈ R3, we define

a†p |p1, . . . , pn〉 =
1√
2ωp

|p, p1, . . . , pn〉 (1.6)
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Remark 1.1. Here we don’t use the vector notation ~p because we require the momentum are on-shell,
which means that p0 =

√
m2 + ~p2 and ~p fixes the four vector p.

As
|p1, p2, . . . , pn〉 = |p2, p1, . . . , pn〉 , (1.7)

we have
[a†p1 , a

†
p2 ] = 0 . (1.8)

Properties 1.1. Properties of the adjoint operator ap: Let |ψ〉 ∈ Hm, |φ〉 ∈ Hn,(
apa

†
k |ψ〉 , |φ〉

)
=
(
a†k |ψ〉 , a

†
p |φ〉

)
. (1.9)

If we require 1.9 is non zero, we can see that m = n. If it is zero, we can see that apa†kHm ⊥ Hn. These
lead to

apa
†
k

∣∣∣
Hm

: Hm → Hm ⇒ ap : Hm → Hm−1 . (1.10)

But we have to be careful about the case when m = 0. For a state |ψ〉 ∈ F , a†k |ψ〉 ∈ ⊗∞
n=1Hn, which

means that (
|0〉 , a†k |ψ〉

)
= 0 = (ak |0〉 , |ψ〉) ⇒ ak |0〉 ⊥ F (1.11)

The only possible case is
ak |0〉 = 0 . (1.12)

Along the same line of reasoning

ak |k1, . . . , kn〉 =
n∑
i=1

√
2ωki(2π)

3δ(3)(~k − ~ki) |k1, . . . , ki−1, ki+1, . . . , kn〉 . (1.13)

We need to determine the commutator [a†k, ap]. Noticing that

a†pak |k1, . . . , kn〉 =
n∑
i=1

√
2ωki
2ωp

(2π)3δ(3)(~k − ~ki) |p, k1, . . . , ki−1, ki+1, . . . , kn〉 , (1.14)

aka
†
p |k1, . . . , kn〉 =

∑
i=1

√
2ωki
2ωp

(2π)3δ(3)(~k − ~ki) |p, k1, . . . , ki−1, ki+1, . . . , kn〉 (1.15)

+

√
2ωp
2ωp

(2π)3δ(3)(~k − ~p) |k1, . . . , kn〉 . (1.16)

This leads that
[a†p, ak] |k1, . . . , kn〉 = −(2π)3δ(3)(~p− ~k) |k1, . . . , kn〉 . (1.17)

For arbitrary basis |k1, . . . , kn〉 ∈ F the equation holds, the only possibility is

[ak, a
†
p] = (2π)3δ(3)(~k − ~p) . (1.18)
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To summarize, the creation and annihilation operator in the Fock space is

Creation: a†p|Hm : Hm → Hm+1 , (1.19)

Annihilation: ap|Hm : Hm → Hm−1 . (1.20)

They satisfy the commutation relation

[a†p, a
†
k] = [ap, ak] = 0, [ap, a

†
k] = (2π)3δ(3)(~p− ~k) . (1.21)

Remark 1.2. We need to be careful about the normalization factor for symmetrization, e.g.

|p1, p2〉 =
1√
2!

(|p1〉 ⊗ |p2〉+ |p2〉 ⊗ |p1〉) . (1.22)

1.3.3 Identity operator on H1

The identity operator is

1 =

∫
d3p

(2π)3
1

2ωp
|p〉 〈p| . (1.23)

The action of the identity operator is

1 |k〉 =
∫

d3p

(2π)3
1

2ωp
|p〉 〈p|k〉 =

∫
d3p

(2π)3
1

2ωp
|p〉 (2π)32ωpδ(3)(~p− ~k) = |k〉 . (1.24)

We need to be careful about the Lorentz invariance of each ingredients. First,

Theorem 1.1. The measure part
∫ d3p

(2π)3
1

2ωp
is Lorentz invariant.

Proof: Recall the property of the delta function:

δ(f(x)) =
∑

f(x0)=0

1

|f ′(x0)|
δ(x− x0) . (1.25)

We could see that factor of the the on-shell momentum p could be rewritten as

1

|2p0|

[
δ(p0 −

√
~p2 +m2) + δ(p0 +

√
~p2 +m2)

]
. (1.26)

Rewrite the expression ∫
d3p

(2π)3
1

2ωp
=

∫
d4p

(2π)4
(2π)δ

(
(p0)2 − ~p2 −m2

)
θ(p0) . (1.27)

The factor d4p is Lorentz invariant as detΛ = ±1 for Λ ∈ O(1, 3). If we restrict Λ ∈ SO(1, 3), detΛ = 1.
θ(p0) is invariant under the orthochorous Lorentz group O↑(1, 3), which proceeds the direction of time. So
the it is indeed Lorentz invariant.
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1.3.4 Constructing operator out of ap, a†p

The Hamiltonian is
H =

∫
d3p

(2π)3
ωpa

†
pap , (1.28)

such that

H |k1, . . . , kn〉 =

(
n∏
i

√
2ωki

)∫
d3p

(2π)3
ωpa

†
papa

†
k1
. . . a†kn |0〉 . (1.29)

To simplify the expression, we need to exchange the position of ap and a†k1 . Since apa
†
k1

= a†k1ap +

(2π)3δ(3)
(
~k1 − ~p

)
, the expression then becomes

(
n∏
i

√
2ωki

)∫
d3p

(2π)3
ωpa

†
pa

†
k1
ap . . . a

†
kn

|0〉+ ωk1a
†
k1
. . . a†kn |0〉 . (1.30)

Repeating this procedure until the annihilation operator directly acts on the vacuum, the expression reduces
to (∑

i

ωki

)
|k1, . . . , kn〉 . (1.31)

However, we need to emphasize that quantum field theory should be Lorentz invariant. We should check
that the definition of the Hamiltonian meets this condition. This leads to the introduction of the quantum
fields.

1.4 Quantum field

In this section, we would introduce the building blocks for Lorentz invariant theories. The free scalar field
at a fixed time could be written as

φ0(x) =

∫
d3p

(2π)3
1√
2ωp

(
ape

i~p·~x + a†pe
−i~p·~x

)
, (1.32)

where the subscript 0 represents the free field.

1.4.1 Interpretation of φ0(~x)

〈k|φ0(~x) |0〉 = 〈k|
∫

d3p

(2π3)

1√
2ωp

(
ape

i~p·~x + a†pe
−i~p·~x

)
|0〉

= 〈k|
∫

d3p

(2π)3
1√
2ωp

a†pe
−i~p·~x |0〉 = 〈k|

∫
d3p

(2π)3
e−i~p·~x

1√
2ωp

1√
2ωp

|p〉

=

∫
d3p

(2π)3
e−i~p·~x

1

2ωp
(2π)3δ(3)(~k − ~p) = e−i

~k·~x ∝ 〈k|x〉 ,

(1.33)

which means that φ0(~x) |0〉 can be interpreted as generating a particle at the position ~x: φ0(~x) |0〉 ∼ |x〉.

Properties 1.2. (a) φ0(~x) |0〉 ∈ H1.
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1.4.2 Time dependence

The Hamiltonian H is the time evolution of operator

i[H,O] = ∂tO for any operator O . (1.34)

The solution of this operator differential equation is

O(t) = eiHtO(0)e−iHt . (1.35)

Note that ∂tH = i[H,H] = 0, hence H is time-independent.

H =

∫
d3p

(2π)3

(
ωpa

†
p(0)ap(0) + V (0)

)
= e−iHtHeiHt =

∫
d3p

(2π)3

(
ωpa

†
p(t)ap(t) + V (t)

)
(1.36)

which means that we could evaluate the ap and a†p at any time t. The system has time-reversal symmetry.
There is no special moment, which corresponding to the conservation of the energy.

Time dependence of ap, a†p for free fields

∂tak(t) = i[H0(t), ak(t)] = i

∫
d3p

(2π)3

[
ωpa

†
p(t)ap(t), ak(t)

]
= i

∫
d3p

(2π)3
− (2π)3δ(3)(~k − ~p)ap(t)

= −iωkak(t) .

(1.37)

Again, the subscript 0 means the free Hamiltonian with no interaction and we have already used the
commutation property to simplify the equation. The solution of this differential equation is direct

ak(t) = ak(0)e
−iωkt . (1.38)

Similarly,
a†k(t) = eiωkta†k(0) . (1.39)

Time dependence of free quantum field

φ0(0, ~x) =

∫
d3p

(2π)3
1

2ωp

(
ap(0)e

i~p·~x + a†p(0)e
−i~p·~x

)
. (1.40)

⇒ φ0(t, ~x) = eiHtφ0(~x)e
−iHt =

∫
d3p

(2π)3
1√
2ωp

(
ap(0)e

−ip·x + ap(0)
†eip·x

)
, (1.41)

where we use that convention that p · x = pµxµ, the equation (1.38, 1.39) and p0 = ωp. Note that

∂µ∂
µφ0(x) := 2φ0(x) = −

∫
d3p

(2π)3
p2√
2ωp

(
ape

−ip·x + a†pe
ip·x
)
= −m2φ0(x) . (1.42)

The equation holds if the momentum is on-shell. We conclude that the free scalar field satisfies the Klein-
Gordan equation.
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Free field vs. interacting field

For more complicated Hamiltonian, we cannot solve for ap(t) analytically. If we set ap(t) and a†p(t), the
scalar field could be written as

φ(t, ~x) =

∫
d3p

(2π)3
1√
2ωp

[
ap(t)e

−ip·x + a†p(t)e
ip·x
]
. (1.43)

Here we define the ap(t) as
eiHtap(0)e

−iHt = ap(t)e
−ip0t , (1.44)

This seems a little bit tricky, but only this definition is consistent with the formalism eiHtφ(0, ~x)e−iHt =

φ(t, ~x). At equal time, the commutation relation is

[ap(t), a
†
k(t)] =

[
eip

0teiHtap(0)e
−iHt, e−ik

0teiHta†k(0)e
−iHt

]
= ei(p

0−k0)teiHt[ap(0), a
†
k(0)]e

−iHt

= (2π)3δ(3)(~p− ~k) .
(1.45)

where we use the on-shell condition (the spatial momentum could determine the time component of pµ.).

1.4.3 Commutation relation of quantum fields

We will argue that φ(t, ~x) and Π(t, ~x) = ∂tφ(t, ~x) are canonically conjugate operators. At equal time,
consider the commutator with x = (t, ~x), y = (t, ~y),

[φ(t, ~x), φ(t, ~y)] =

∫
d3p

(2π)3
d3k

(2π)3
1√
2ωp

1√
2ωk

×[
ak(t)e

−ikx + a†k(t)e
ikx, ap(t)e

−ipx + a†p(t)e
ipx
]
.

(1.46)

Evaluate the commutator, the nontrivial term is

e−i(k
0−p0)t+i~k·~x−i~p·~y[ak(t), a

†
p(t)] + ei(k

0−p0)t−i~k·~x+i~p·~y[a†k(t), ap(t)] , (1.47)

because
[ak(t), a

†
p(t)] = (2π)3δ(3)(~k − ~p), [a†k(t), ap(t)] = −(2π)3δ(3)(~k − ~p) . (1.48)

Substitute this term into the equation (1.46) is

[φ(t, ~x), φ(t, ~y)] =

∫
d3k

(2π)3
1

2ωk

[
ei
~k·(~x−~y) − e−i

~k·(~x−~y)
]
. (1.49)

Noticing that ωk = ω−k, the integral is integrated in the whole region of ~k, if we consider the variable
transform ~k → −~k, the integration is the same,

⇒ [φ(t, ~x), φ(t, ~y)] = 0 . (1.50)

Π(t, ~x) = ∂tφ(t, ~x) = i[H,φ(t, ~x)] = i[H0 + V (φ), φ(t, ~x)] = i[H0, φ(t, ~x)]. (1.51)
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Consider the free field and using i[H0, ak(0)] = −ωkak(0),

[φ(t, ~x),Π(t, ~y)] = −i
∫

d3p

(2π)3
d3k

(2π)3
1√
2ωp

√
ωk
2

[
ap(t)e

−ipx + a†p(t)e
ipx, ak(t)e

−ikx − a†k(t)e
ikx
]
. (1.52)

Evaluate the commutator, the equation reduces to

[φ(t, ~x),Π(t, ~y)] = − i

2

∫
d3p

(2π)3

(
−ei~p·(~x−~y) − e−i~p·(~x−~y)

)
= i

∫
d3p

(1π)3
ei~p·(~x−~y) = iδ(3)(~x− ~y) . (1.53)

Similar calculation shows [Π(t, ~x),Π(t, ~y)] = 0.
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Chapter 2

Classical Field Theory

2.1 From discrete case to fields

2.2 Noether theorem

Continuous symmetries of the Lagrangian leads to the conserved current.

Example 2.1. Given the Lagrangian of the complex scalar field

L = ∂µφ∂
µφ∗ −m2|φ|2 . (2.1)

The complex scalar field has two independent degrees of freedom. There is two way to consider it. One way
is to write the complex scalar field as φ = φ1+ iφ2, where φ1, φ2 are both real scalar field. The other way is
that φ and its conjugate φ∗ are independent scalar field. The equation of motion derived by Euler-Lagrange
equation is

(2+m2)φ = 0 . (2.2)

L is obviously invariant under the global symmetry transformation

φ→ eiαφ φ∗ → e−iαφ∗ . (2.3)

Such a symmetry is called U(1) symmetry.

Noether theorem: Assume L (φ1, . . . , φn, ∂µφ1, . . . , ∂µφn) is invariant under the transformation

φi(x) → φ̃i(α) := φi(x;α) , (2.4)

where α is independent of x (global symmetry?). The Lagrangian is invariant under the transformation,
which means that

∂L (φ̃(α), ∂µφ̃(α))

∂α
= 0 . (2.5)

At the same time.,
∂L (φ̃(α), ∂µφ̃(α))

∂α
=
∑
n

[
∂L

∂φ̃n

∂φ̃n
∂α

+
∂L

∂(∂µφ̃n)

∂(∂µφ̃n)

∂α

]
. (2.6)
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Rewrite the second term of the right hand side of the equation as

∂L

∂(∂µφ̃n)

∂(∂µφ̃n)

∂α
= ∂µ

(
∂L

∂(∂µφ̃n)

∂φ̃n
∂α

)
− ∂µ

∂L

∂(∂µφ̃n)

∂φ̃n
∂α

. (2.7)

Put out the common terms then the equation becomes

∂L

∂(∂µφ̃n)

∂(∂µφ̃n)

∂α
=
∑
n

[
∂L

∂φ̃n
− ∂µ

∂L

∂(∂µφ̃n)

]
∂φ̃n
∂α

+ ∂µ

(
∂L

∂∂µφ̃n

∂φ̃n
∂α

)

=
∑
n

∂µ

(
∂L

∂∂µφ̃n

∂φ̃n
∂α

)
,

(2.8)

where we have already assumed that all fields satisfy the equation of motion at the second equal sign. The
Noether conserved current is

⇒ Jµ =
∑
n

(
∂L

∂∂µφ̃n

∂φ̃n
∂α

)
. (2.9)

By invariance on α, evaluate at α = 0 (φ(~x, 0) = φ(x)),

Jµ =
∑
n

∂L

∂(∂µφ)
δαφn, δαφn =

∂φ̃n
∂α

∣∣∣∣∣
α=0

. (2.10)

Obviously ∂µJµ = 0, which is the requirement of the conserved current. As the associate charge,

Q =

∫
d3xJ0 (2.11)

is conserved since
∂tQ =

∫
d3x∂tJ

0 = −
∫
d3x∂iJ

i = surface integral = 0 . (2.12)

Example 2.2. Take the L given in (2.1), and we define φ̃(α) = e−iαφ, φ̃∗ = eiαφ∗. The conserved current
associated to the symmetry transformation is

Jµ =
∂L

∂(∂µφ)
δαφ+

∂L

∂(∂µφ∗)
δαφ

∗ = ∂µφ∗(−iφ) + ∂µφ(iφ∗) = −i(φ∂µφ∗ − φ∗∂µφ) . (2.13)

One can verify that ∂µJµ = 0.

2.3 The Maxwell Lagrangian and gauge invariance

Recall that ~E and ~B, the electromagnetic field strength Fµν = ∂µAν − ∂νAµ, where Aµ is gauge field and
Fµν is invariant under the gauge transformation

Aµ → Aµ + ∂µε, (2.14)

where ε is arbitrary function of spacetime coordinate.
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2.4 Distinction between gauge transformation and (global) symmetry
transformation

The Lagrangian of the electromagnetic field is

L = −1

4
FµνF

µν . (2.15)

The Euler-Lagrange equation is
∂µF

µν = 0, (2.16)

which is the vacuum Maxwell equation. If we couple electromagnetic field to external sources, the equation
of motion will be

∂µF
µν = Jν . (2.17)

Example 2.3. The external sources associated to a static charge of strength e at the origin is

Jµ(x) =

{
µ = 0, ρ(x) = eδ(3)(~x),

µ = i, 0 .
(2.18)

The corresponding Lagrangian associated with sources is

L = −1

4
FµνFµν −AµJ

µ . (2.19)

Not the question raises, what if we do the gauge transformation now? Is the Lagrangian still invariant?

L ′ = −1

4
FµνFµν − (Aµ + ∂µε)J

µ = L − ∂µ(εJ
µ) + ε∂µJ

µ . (2.20)

The second term of the right hand side of the equation is the total derivative, which will be the boundary
term after integration, so it could be ignored. If we impose the conserved condition ∂µJ

µ = 0, the
Lagrangian is invariant under the gauge transformation. In other words, if we require L is invariant under
gauge transformation, it is equivalent to requires the coupling to conserved currents. Furthermore,

∂µF
µν = Jµ ⇒ ∂ν∂µF

µν = ∂νJ
ν = 0 . (2.21)

Considering conserved current also requires the equation of motion. Coupling electromagnetic field to a
dynamic source, we require ∂µJµ = 0, which we can say that it is on shell. It is not good enough, we will
require gauge invariance.

2.5 Feynman rules in classical field theory

The goal of the section is to use Feynman rules (graphical method) to solve the equation of motion.
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2.5.1 Ex: electromagnetic field with static source at the origin

Impose the Lorenz gauge ∂µAµ = 0,

Jν = ∂µF
µν = ∂µ (∂

µAν − ∂νAµ) = 2Aν , (2.22)

using the component form,
2A0 = eδ3(x), 2Ai = 0 → Ai = 0 . (2.23)

The gauge condition requires ∂0A0 = 0. Solve the differential equation through Fourier transformation
method, setting

A0(x) =

∫
d3k

(2π)3
Ã0(~k)e

i~k·~x , (2.24)

which is the static Ansatz due to gauge condition.

2A0(x) =

∫
d3k

(2π)3
2x
(
Ã0(~k)e

i~k·~x
)
=

∫
d3k

(2π)3
k2
(
Ã0(~k)e

i~k·~x
)
= e

∫
d3k

(2π)3
ei
~k·~x ⇒ Ã0(~k) =

e

~k2
. (2.25)

Inverse Fourier transform gives

A0(~x) =

∫
d3k

(2π)3
e

~k2
ei
~k·~x =

e

4π

1

r
. (2.26)

2.5.2 General source: first Green function method

Inhomogeneous PDE for a δ-function is

Dxφ = J, DxΠ(x, y) = δ(4)(x− y) , (2.27)

where Π is called the Green function. Then based on the PDE theory, for arbitrary source, the solution is
φ(x) =

∫
d4yΠ(x, y)J(y),

Dxφ(x) =

∫
d4yDxΠ(x, y)J(y) =

∫
d4yδ(4)(x− y)J(y) = J(x) . (2.28)

Of course the Green function will be fixed by the boundary condition. Back to our problems, the differential
operator is Dx = −2, based on the discussion above,

−2Π(x, y) = δ(4)(x− y) =

∫
d4k

(2π)4
eik(x−y) ⇒ Π(x, y) =

∫
d4k

(2π)4
1

k2
eik(x−y) , (2.29)

where the notation k(x− y) := kµ(xµ − yµ).

2.5.3 More complicated green function Dx determining solutions

Consider the Lagrangian,
L =

1

2
∂µφ∂

µφ+
1

3
λφ3 + Jφ . (2.30)

The equation of motion is
2φ− (λφ2 + J) = 0 . (2.31)
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Suppose λ is small parameter, the Ansatz is φ =
∑+∞

n=0 λ
nφn, satisfying

2
(
φ0 + λφ1 + λ2φ2 + . . .

)
− λ

(
φ0 + λφ1 + λ2φ2 + . . .

)2 − J = 0 . (2.32)

Reorganize the expression, we have

(2φ0 − J) + λ
(
2φ1 − λφ20

)
+ λ2 (2φ2 − 2φ0φ1) + . . . = 0 (2.33)

The solution for the coefficients are

φ0(x) =

∫
d4yΠ(x, y)J(y), (2.34)

φ1(x) = −
∫
d4yΠ(x, y)φ20(y) (2.35)

φ2(x) = −
∫
d4yΠ(x, y)2φ0φ1 , (2.36)

or diagrammatically,

φ0 = Π(x,y)
x J(y)

(2.37)

φ1 = x

J

J

(2.38)

φ2 =
x

J

J

J

+
x

J

J

J

(2.39)

The trivalent vertex comes from the interaction φ3. Perturbation theory is governed by Feynman rules.
The orders of contribution equal the number of vertices.

Remark 2.1. Only tree level graphs occur, i.e no loops. In fact, the loop diagram comes from the quantum
effect.

2.6 From classical field theory to quantum field theory

The canonical quantization procedure is to replace the Poisson bracket {·, ·} by the commutator 1
i [·, ·].

However, ordering issues have to be dealt with. A corollary from Noether theorem is that for symmetries
such that φn(x; ε) = F (φn(x), ε), i.e. the transformation doesn’t include Π dependence.
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Corollary 2.1.

[Q,φn(x)] = −iδεφn(x) where δεφn(x) =
∂φn(x)

∂ε

∣∣∣∣
ε=0

. (2.40)

i.e. Q is the infinitesimal generator of the symmetry.

Proof:
[Q,φm(t, ~x)] =

[∫
d3yJ0(t, ~y), φm(t, ~x)

]
=

[∫
d3y

∑
n

∂L

∂(∂0φn)
δεφn(t, ~y), φm(t, ~x)

]
.

(2.41)

By assumption, δεφn(t, ~y) doesn’t include Πk(t, ~y), so the expression is

∑
n

∫
d3y [Πn(t, ~y), φm(t, ~x)] δεφn(t, ~y) = −iδεφm(~x) . (2.42)

where we have already used the commutation relation between Π and φ.
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Chapter 3

In and out states and the S-matrix

3.1 Scattering

The scattering picture: the particle flow comes from past infinity with momentum p. At time zero, the
scattering happens. Then the detector will detect the particle at the future infinity, with momentum p′. It
is natural to introduce two classes of Heisenberg states. One is |p1, . . . , pn〉in vector denoting a state which
in the far past corresponds to a collection of free state at momentum pi. |~p1, . . . , ~pn〉out as above of far part
replaced by far future. The scattering probability is∣∣out

〈
~p1

′, . . . , ~pk
′∣∣~p1, . . . , ~pn〉in

∣∣2 . (3.1)

If we use the abstract indices to replace the specific state and define S matrix, the matrix element is Sβα:

Sβα = out
〈
~p1

′, . . . , ~pk
′∣∣~p1, . . . , ~pn〉in = out 〈β|α〉in . (3.2)

Note we define particles as energy eigenstates of the free Hamiltonian

H0 |~p〉 = Ep |~p〉 , Ep =
√
~p2 +m2 . (3.3)

In and out states should be eigenstate of the full Hamiltonian H = H0+V of the same energy, approximated
by free states in far past/far future.

3.2 Defining in and out states

Match Heisenberg and Schrödinger picture states at t = 0, i.e.
∣∣φH〉 = ∣∣φS(0)〉.

eiHt
∣∣φH〉 = eiHt

∣∣φS(0)〉 = ∣∣φS(−t)〉 . (3.4)

Definition 3.1. Define in and out states. We assume the following equation holds under the limit,

lim
t→∞

eiHt |φ〉in = lim
t→∞

eiH0t |φ〉 , (3.5)
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likewise
lim
t→∞

e−iHt |φ〉out = lim
t→∞

e−iH0t |φ〉 . (3.6)

With Ω(t) = eiHte−iH0t, we have

|φ〉in = Ω(−∞) |φ〉 , (3.7)

|φ〉out = Ω(∞) |φ〉 . (3.8)

In particular, introduce |~p1, . . . ~pn〉 ∈ Hfree and the in and out states has the property that

H |~p1, . . . , ~pn〉in/out =
∑

ωpi |~p1, . . . , ~pn〉in/out , (3.9)

lim
t→±∞

e−iHt |~p1, . . . , ~pn〉out/in = lim
t→±∞

e−iH0t |~p1, . . . , ~pn〉 . (3.10)

Remark 3.1. To make sense of this equality,the momenta eigenstate are not localized. It needs to be
interpreted as in the whole region:

lim
t→±∞

∫
f(p)e−iHt |p〉out/in dp1 . . . dpn = lim

t→±∞
inf f(p)e−iH0t |~p1, . . . , ~pn〉in . (3.11)

Note that the equation (3.10)implies HΩ(±∞) = Ω(±∞)H0 by considering the action on a basis of
Hfree:

HΩ(±∞) |~p1, . . . , ~pn〉 = H |φ〉out/in = Eφ |φ〉out/in = Ω(±∞)H0 |~p1, . . . , ~pn〉 . (3.12)

Rewrite the expression as

0 = iHΩ(±∞)− iΩ(±∞)H0 =
d

dt

(
eiHte−iH0t

)∣∣
t→±∞ , (3.13)

whose interpretation is that the time evolution at early and late time is approximately free. In terms of
Ω, the matrix element of S matrix is

Sβα = out 〈β|α〉in = 〈β|Ω†(∞)Ω(−∞) |α〉 . (3.14)

It motivates us to define the operator U(t1, t2),

Definition 3.2.
U(t1, t2) := Ω†(t1)Ω(t2) = eiH0t1eiH(t1−t2)e−iH0t2 . (3.15)

3.3 Creation and annihilation operators for in/out states

Recall that
|p〉in/out = lim

t→∓∞
Ω(t) |p〉 . (3.16)

We want to have some operators, similar to the free case, that could create |p〉in/out acting on a vacuum.
A natural Ansatz is that

1√
2ωp

|p〉in/out = a†(∓∞)Ω(∓∞) |0〉 , (3.17)
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where we define |Ω〉in/out (up to possible normalization) as |Ω〉in/out := Ω(∓∞) |0〉. Consider it carefully,

⇒ lim
t→∓∞

a†p(t)Ω(t) |0〉 = lim
t→∓∞

Ω(t)a†p,0(t) |0〉 , (3.18)

where the subscript 0 denotes free case. Recall that in the interacting field, the time evolution of ap is
based on the equation (1.44), then for creation operator we have

eiHta†p(0)e
−iHt = a†p(t)e

ip0t ⇒ a†p(t) = e−iωpteiHta†p(0)e
−iHt (3.19)

So the left hand side equation becomes

a†p(t)Ω(t) = e−iωpteiHta†p(0)e
−iHteiHte−iH0t. (3.20)

Meanwhile the right hand side of the equation is

Ω(t)a†p,0(t) = eiHte−iH0te−iωpteiH0ta†p,0(0)e
−iH0t . (3.21)

It is consistent to set a†p(0) = a†p,0(0), which matches on interacting and free creation operator at time t = 0

such that

a†p(t) = e−iωpteiHta†p,0(0)e
−iHt = e−iωpteiHte−iH0teiH0ta†p,0(0)e

−iH0teiH0te−iHt = Ω(t)a†p,0(0)Ω
†(t) . (3.22)

⇒ ∂ta
†
p(t) =

(
d

dt
Ω(t)

)
a†p,0(0)Ω

†(t) + Ω(t)a†p,0(0)
d

dt
Ω†(t) . (3.23)

Likewise limt→∓∞ ∂ta
†
p(t) = 0� which is the consequence of the time evolution at early and late time is

approximately free.

3.4 S-matrix, cross section and decay rate

In scattering experiment, one important physical quantity is the cross sectional area A of the beam. the
cross section σ will be defined as

σ

A
=

(
# of incoming particles
# of scattering events

)−1

= scattering probability P . (3.24)

Quantum mechanically,

P =
| 〈f |S |i〉 |2

〈f |i〉
. (3.25)

If we extract the trivial scattering part S = 1 + iT . Because 〈f |j〉 = 0 for f 6= j, 〈f |S |i〉 = i 〈f |T |i〉. It
is often useful to extract the 4-momentum conservation δ-functor

T = (2π)4δ(4)

(∑
in
pi −

∑
out

pj

)
M , (3.26)

〈f |M |i〉 is called the matrix element.
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Example 3.1. One important example is the 2 → n scattering, the differential cross section

dσ =
1

2E12E2|~v1 − ~v2|
|M |2dΠ , (3.27)

where the 1
2E12E2|~v1−~v2| is kinetic factor, |M |2 will be computed through Feynman diagram and dΠ is the

Lorentz invariant phase factor. We define the Lorentz invariant phase space factor as

dΠLIPS = (2π)4δ(4) (Σp)
∏

final states

1

(2π)3
d3pj
2Ej

. (3.28)

There’s a question about the Lorentz invariance. The beam axis breaks the rotational symmetry to axial
symmetry, but expected boost symmetry along this axis (usually we choose it as z-axis). Pay attention that
here the |~v1 -~v2| is relative velocity of the beams as view from the laboratory frame, which means that

2E12E2|~v1 − ~v2| = 4E1E2

∣∣∣∣ pz1E1
− pz2
E2

∣∣∣∣ = 4 |pz1E2 − pz2E1| = 4
∣∣pz1p02 − pz2p

0
1

∣∣ = 4|εµxyνpµ1p
ν
2 | . (3.29)

It seems that there is some redundant indices appear. However, in this case, the only possible non-zero
term is µ = 0, ν = 3 or µ = 3, ν = 0, which doesn’t relate to the indices x, y, so the equation holds. The
Levi-Civita antisymmetric tensor is Lorentz pseudo tensor by

Λµk1Λ
ν
k2Λ

ρ
k3
Λσk4εµνρσ = (detΛ)εk1k2k3k4 , (3.30)

which proves that the kinetic factor is indeed boost invariant along the z-axis.

Example 3.2. Another special example is the decay process, which can be viewed as the 1 → n scattering
process. The definition of the decay rate is

Γ =
# of decays per unit time
# of unstable particles

. (3.31)

The differential decay rate is
dΓ =

1

2E1
|M |2dΠLIPS . (3.32)
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Chapter 4

The LSZ Reduction

LSZ is the abbreviate of three people’s name: Lehmann-Symanzik-Zimmermann.

4.1 LSZ formula

S-matrix can be extracted from a time order product of quantum fields, which is exactly the LSZ formula,

out 〈f |i〉in =

[
i

∫
d4x1e

−ip1x1(21 +m2)× . . .× i

∫
d4xme

+ipmxm(2m +m2)

]
× out 〈Ω|T {φ(x1) . . . φ(xn)} |Ω〉in + contact terms ,

(4.1)

where the contact terms are the contributions involving integration over δ(4)(xi−xj) factor. The minus sign
in the exponential e−ipixi represents the incoming momentum while the plus sign represents the outgoing
case. First we focus on the scalar field for simplicity. Here the T denotes the time ordering1,which action
of the product of field is the permute them based on the time component such that later time are to the
left of earlier times.

T {φ(0)φ(|t|)φ(−|t|)} = φ(|t|)φ(0)φ(−|t|) . (4.2)

T just manhandles the operators within the brackets, placing them in order regardless of whether they
commute or not. A question raises immediately, it this operation Lorentz invariant? We leave this question
later and we will show that the spacelike separated field commute. We denote 〈. . .〉 := out 〈Ω| . . . |Ω〉in. The
factor 2+m2 becomes −p2 +m2 in Fourier space, which means that[

i

∫
d4xe−ipx

(
2+m2

)
. . .

]
〈T {. . .}〉 =

[
i

∫
d4xe−ipx

(
−p2 +m2

)
. . .

]
〈T {. . .}〉

= (−p2 +m2)i

∫
d4xe−ipx . . . 〈T {. . .}〉 ,

(4.3)

if the n-point function falls off sufficiently fast at ∞. These factors will therefore remove all terms in the
time-ordered product except those with poles of the form 1

p2−m2 , corresponding to propagators of on-shell
particles. i.e. LSZ obtains S-matrix as residues of n-point function of the Fourier transform. Now we want
to prove the LSZ formula.

1In this note, the time ordering operator is always denoted by this notation T .
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Proof:

The proof is based on two relations,

i

∫
d4xeipx(2+m2)φ(x) =

√
2ωp (ap(∞)− ap(−∞)) , (4.4)

−i
∫
d4xe−ipx(2+m2)φ(x) =

√
2ωp

(
a†p(∞)− a†p(−∞)

)
. (4.5)

Let us prove this lemma above first. Considering

i

∫
d4xeipx(22 +m2)φ(x) (4.6)

we have to be careful about the boundary conditions at t → ±∞, but we can assume that the field fall
fast enough at spatial infinity, which allows us to simplify the above equation as

i

∫
d4xeipx(22 +m2)φ(x) = i

∫
d4xeipx

(
∂2t − ∂i∂i +m2

)
φ(x) = i

∫
d4xeipx

(
∂2t + ~p2 +m2

)
φ(x) , (4.7)

since
i

∫
d4xeipx(−∂i∂i)φ(x) = − φ(x)∂ie

ipx
∣∣+∞
−∞ +

∫
d4x(ipi)e

ipx∂iφ(x)

= −(ipi)
2

∫
d4xeipxφ(x) =

∫
d4x~p2eipxφ(x) .

(4.8)

Using the notation ω2
p = ~p2 +m2, the integral is

i

∫ +∞

−∞
dteiωpt

∫
d3xe−i~p·~x

(
∂2t + ω2

p

)
φ(x) =

∫ +∞

−∞
dt∂t

[
eiωpt

∫
d3xe−i~p·~x (i∂t + ωp)φ(x)

]
, (4.9)

as
∂t
[
eiωpt(i∂t + ωp)φ(x)

]
= eiωpt

(
iωp

(
�
�>i∂t + ωp

)
+ i∂2t +���*ωp∂t

)
φ(x) . (4.10)

The red part of the equation (4.9) is∫
d3xe−i~p·~x (i∂t + ωp)φ(x) =

∫
d3xe−i~p·~x(i∂t + ωp)

∫
d3k

(2π)3
1√
2ωk

[
ak(t)e

−ikx + a†k(t)e
ikx
]
. (4.11)

We want to evaluate this expression when t→ ∓∞, recall that limt→∓∞ ∂ta
†
p(t) = 0, limt→∓∞ ∂tap(t) = 0,

after the action of the time derivative,

⇒
∫

d3k

(2π)3
1√
2ωk

[
(ωk + ωp)ak(t)e

−iωkt

∫
d3xei(

~k−~p)·~x + (−ωk + ωp)a
†
ke
iωkt

∫
d3xe−i(

~k+~p)·~x
]
, (4.12)

The integration of the spatial indices is easy, which generates two δ function,

⇒
∫

d3k

(2π)3
1√
2ωk

[
(ωk + ωp)ak(t)e

−iωkt(2π)3δ(3)(~k − ~p) + (−ωk + ωp)a
†
ke
iωkt(2π)3δ(3)(~k + ~p)

]
. (4.13)
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Completing the integration and notice that ω~p = ω−~p, the a†k part vanishes. The left term is

⇒
√
2ωpap(t)e

−iωpt . (4.14)

Substitute it into the equation (4.9),

⇒ i

∫
d4xeipx(22 +m2)φ(x) =

∫ +∞

−∞
dt∂t

[
eiωpt

√
2ωpap(t)e

−iωpt
]
=
√
2ωp (ap(∞)− ap(−∞)) . (4.15)

Likewise
i

∫
d4xe−ipx(2+m2)φ(x) = −

√
2ωp

(
a†p(∞)− a†p(−∞)

)
. (4.16)

Back to LSZ, consider the case of 2 → n− 2 scattering,

|i〉in =
√
2ω1

√
2ω2a

†
p1 (−∞) a†p2(−∞) |Ω〉in , (4.17)

|f〉out =

n∏
k=3

√
2ωka

†
pk
(∞) |Ω〉out . (4.18)

The S matrix element

out 〈f |i〉in =

(
n∏
k=1

√
2ωk

)
out 〈Ω| ap3(∞) . . . apn(∞)a†p1(−∞)a†p2 |Ω〉in

=

(
n∏
k=1

√
2ωk

)
out 〈Ω|T {ap3(∞) . . . apn(∞)a†p1(−∞)a†p2} |Ω〉in ,

(4.19)

where the second equal sign holds because it is automatically time ordered. The next step is to make
replacement: for arbitrary api(∞), we replace it by api(∞)− api(−∞). For arbitrary a†pj (−∞), we replace
it by a†pj (−∞) − a†pj (∞). The replacement takes the advantage of the time ordering product, since the
api(−∞) will move to the right and annihilate the state and a†pj (+∞) will move to the left and annihilate
the state, too. We will exclude trivial scattering, i.e. p1, p2 ∈ {p3, . . . , pn}. Plugging in the operator
expansions for ap3(∞)−ap3(−∞), ... , a†p1(−∞)−a†p1(∞) yields LSZ up to δ-function contributions arising
upon pulling ∂2t out of the T -product.
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Chapter 5

Computing time ordered products

5.1 The Feynman propagator

In this section we will evaluate the free 2-point function. The strategy is to move the annihilation operator
a next to the creation operator a†.

5.1.1 Free scalar field

In this section, we ignore the subscript 0 for simplicity, but the reader should keep in mind that we are
discussing the free scalar field. The free scalar field is

φ(x) =

∫
d3k

(2π)3
1√
2ωk

(
ake

−ikx + a†ke
ikx
)
, k0 = ωk =

√
~k2 +m2 . (5.1)

We want to compute the 2 point function 〈0|T {φ(x1)φ(x2)},

〈0|φ(x1)φ(x2) |0〉 =
∫

d3k1
(2π)3

1√
2ωk1

∫
d3k2
(2π)3

1√
2ωk2

〈0| ak1a
†
k2
|0〉 e−ik1x1+ik2x2

=

∫
d3k1
(2π)3

1√
2ωk1

∫
d3k2
(2π)3

1√
2ωk2

(2π)3δ(3)( ~k1 − ~k2)e
−ik1x1+ik2x2

=

∫
d3k

(2π)3
1

2ωk
e−ik(x1−x2) .

(5.2)

Next, we introduce time ordering,

〈0|T {φ(x1)φ(x2)} |0〉 = 〈0|φ(x1)φ(x2) |0〉Θ(t1 − t2) + 〈0|φ(x2)φ(x1) |0〉 θ(t2 − t1)

=

∫
d3k

(2π)3
1

2ωk

[
ei
~k·(~x1−~x2)e−iωk(t1−t2)Θ(t1 − t2) + e−i

~k·(~x1−~x2)eiωk(t1−t2)Θ(t2 − t1)
]

=

∫
d3k

(2π)3
1

2ωk
e−i

~k·(~x1−~x2) [e−iωkτΘ(τ) + eiωτΘ(−τ)
]
,

(5.3)
where we have defined t1 − t2 = τ . We need to check that if it is Lorentz invariant. First, we claim that

e−iωkτΘ(τ) + eiωkτΘ(−τ) = lim
ε→0

(
−2ωk
2πi

)∫ +∞

−∞

dω

ω2 − ω2
k + iε

eiωτ . (5.4)
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Figure 5.1: The integral contour

Proof

: We will prove this expression by evaluating via residue theorem. We need to specify poles of the function,

1

ω2 − ω2
k + iε

=
1

ω − (ωk − iε′)
× 1

ω + (ωk − iε′)
with 2ωkε

′ = ε

=
1

2ωk

[
1

ω − (ωk − iε′)
− 1

ω − (−ωk + iε′)

]
.

(5.5)

Consider two cases

• τ > 0, the integral will be

I =

∫
τ>0

= 2πiRes−1

ωk

eiωτ

ω − (−ωk + iε)
= 2πi

−1

2ωk
e−iωkτ . (5.6)

• τ < 0, the integral is

I =

∫
τ<0

= 2πiRes 1

2ωk

eiωτ

ω − (ωk − iε′)
= 2πi

1

ωk
eiωkτ . (5.7)

Based on these two calculations, we can see that

⇒
(
−2ωk
2πi

)∫ +∞

−∞

dω

ω2 − ω2
k + iε

eiωτ = e−iωkτΘ(τ) + eiωkτΘ(−τ) , (5.8)
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analytically extend the equation we see that the limit also satisfies.

⇒ 〈0|T {φ(x1)φ(x2)} |0〉 =
∫

d3k

(2π)3
e−i

~k·(~x1−~x2)
(
−2ωk
2πi

)∫ +∞

−∞

dω

ω2 − ω2
k + iε

eiωτ

=

∫
d4k

(2π)4
i

(k0)2 − (~k2 +m2) + iε
eik

0(t1−t2)−i~k·(~x1−~x2)

=

∫
d4k

(2π)4
i

k2 −m2 + iε
eik(x1−x2) ,

(5.9)

which is manifestly Lorentz invariant. Terminally time ordered vacuum expectation value (VEV) of two
free fields (i.e. their free 2 point function) is called the Feynman propagator DF (x1 − x2). Note that
DF (x1−x2) above is a Green’s function to the EOM of the free field (2+m2)DF (x1−x2) = −iδ(4)(x−y).
We will see that this holds generally later. The iε description fixes the choice of adding a homogeneous
solution to the Green’s function.

5.2 Calculating n-point function in interacting theories

Recall that in Heisenberg picture,

i∂tO(x) = [O(x),H] ⇒ O(x) = eiHtO(0, ~x)e−iHt. (5.10)

If we consider the perturbation theory, H = H0(t) + V (t), where the interacting part V (t) is small. Here
we use the Heisenberg picture

H0(t) = eiHtH0(0)e
−iHt , V (t) = eiHtV (0)e−iHt . (5.11)

To relate the free theory, we introduce the interaction pictures. The Heisenberg field is φ(x) = eiHtφ(0, ~x)e−iHt,
the interacting picture is

φI(x) = eiH0tφ(0, ~x)e−iH0t = φ0(x) , (5.12)

where the φ0(x) represents the free field. If we transform it back to the Schrödinger picture

φ(t, ~x) = eiHte−iH0tφI(x)e
iH0te−iHt = Ω(t)φ0(x)Ω

†(t) . (5.13)

Recall that
|Ω〉in = NIΩ(−∞) |0〉 ,

|Ω〉out = NFΩ(∞) |0〉 ,
(5.14)

where NI and NF are normalization factor, which satisfies 1 = out 〈Ω|Ω〉in = NIN
∗
F = 〈0|Ω†(∞)Ω(−∞) |0〉.

With the expression above, we can write the vacuum expectation of time order product as

out 〈Ω|T {φ(x1) . . . φ(xn)} |Ω〉in =

NIN
∗
F 〈0|Ω†(∞)Ω(t1)φ0(x1)Ω

†(t1)Ω(t2)φ0(x2)Ω
†(t2) . . .Ω(tn)φ0(xn)Ω

†(tn)Ω(−∞) |0〉 ,
(5.15)
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where we have assume that t1 > t2 > . . . > tn without loss of generality. Define

U(t1, t2) = Ω†(t1)Ω(t2) = eiH0t1e−iH(t1−t2)e−iH0t2 , (5.16)

and U satisfies the following differential equation

i∂tU(t, t0) = i
(
iH0e

iH0te−iH(t−t0)e−iHt0 + eiH0t(−iH)e−iH(t−t0)e−iH0t0
)

= eiH0tV e−iH0tU(t, t0)

= VI(t)U(t, t0) .

(5.17)

We could solve this equation iteratively,

U(t, t0) = 1 − i

∫ t

t0

dt′VI(t
′)U(t′, t0) . (5.18)

If V is small, it is safe to expand the integral

U(t, t0) = 1 − i

∫ t

t0

dt′VI(t
′)

(
1 − i

∫ t′

t0

dt′′VI(t
′′) (. . .)

)

= 1 − i

∫ t

t0

dt′VI(t
′) + (−i)2

∫ t

t0

dt′
∫ t′

t0

dt′′VI(t
′)VI(t

′′) + . . . .

(5.19)

 

Figure 5.2: Integration region

Note that we have to impose t′ ≥ t′′. The integration re-
gion of the second term is as the figure (5.2) shows. It will
simplify our considerations to integrate over the full space.
This is justified if we

1. divided by the factor 2.

2. reverse the orders of the operator when t′′ > t′, i.e. if
we time-order the integral.

Then we have the following equation

U(t, t0) = 1 − i

∫ t

t0

dt′VI(t
′) +

1

2
(−i)2

∫ t

t0

∫ t

t0

dt′′T
{
VI(t

′)VI(t
′′)
}
+ . . . (5.20)

By reduction we have

U(t, t0) = 1 − i

∫ t

t0

dt′VI(t
′) + . . .+

(−i)n

n!

∫ t

t0

. . .

∫ t

t0

dt1 . . . dtnT {VI(t1) . . . VI(tn)}+ . . .

= T

{
exp

[
−i
∫ t

t0

dt′VI(t
′)

]}
.

(5.21)

This is known as a time-ordered exponential or a Dyson series.
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Remark 5.1. Based on the definition of U(t1, t2), we have the following relation

U(t1, t2)U(t2, t3)
t1>t2>t3= eiH0t1e−iH(t1−t2)e−iH0t2eiH0t2e−iH(t2−t3)e−iH0t3 = U(t1, t3) . (5.22)

If we use Dyson series to prove that, it is obvious taking the advantage of exponential function.

Returning our calculation of the VEV or the time order product of the interacting fields. We have

out 〈Ω|T {φ(x1) . . . φ(xn)} |Ω〉in =

NIN
∗
F 〈0|Ω†(∞)Ω(t1)φ0(x1)Ω

†(t1)Ω(t2)φ0(x2)Ω
†(t2) . . .Ω(tn)φ0(xn)Ω

†(tn)Ω(−∞) |0〉

= NIN
∗
F 〈0|T {U(∞, t1)φI(x1)U(t1, t2) . . . φI(xn)U(tn,−∞)} |0〉 .

(5.23)

Thanks to the property of time order product T that no matter what order of the operators, the final
result will be listed based on the time component. So the operators commute in the time order product,
we rearrange the equation as

NIN
∗
F 〈0|T {φI(x1) . . . φI(xn)U(∞, t1)U(t1, t2) . . . U(tn,∞)} |0〉 =

NIN
∗
F 〈0|T

{
φI(x1) . . . φI(xn)T

{
exp

[
−i
∫ +∞

−∞
VI(t)dt

]}}
|0〉 ,

(5.24)

where we have already taken the advantage of the property Eq. (5.22). In time order product, the time
order product operations can be removed since the result will be the same. We fix the normalization factor
as

NIN
∗
F =

1

〈0|T
{
exp

[
−i
∫ +∞
−∞ VI(t)dt

]}
|0〉

. (5.25)

We finally arrive at

out 〈Ω|T {φ(x1) . . . φ(xn)} |Ω〉in =
〈0|T

{
φI(x1) . . . φI(xn) exp

[
−i
∫ +∞
−∞ VI(t)dt

]}
|0〉

〈0|T
{
exp

[
−i
∫ +∞
−∞ VI(t)dt

]}
|0〉

. (5.26)

For a physics theory, if we know the Lagrangian L = L0 + Lint, the potential part will be

V = −
∫
d3xLint(φ) ⇒ VI = eiH0tV e−iH0t = −

∫
d3xLint(φI) . . (5.27)

Combine with the time integration, the exponential factor will be

exp

[
−i
∫ +∞

−∞
VI(t)dt

]
= exp

[
i

∫
d4xLint

]
. (5.28)
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Chapter 6

Hamiltonian derivation of Feynman rules

6.1 General strategy

We will take an example to illustrate the calculation method constructed above. Consider the Lagrangian
of φ3 theory

Lint =
g

3!
φ3 . (6.1)

The interacting 2-point function is

out 〈Ω|T {φI(x1)φI(x2)} |Ω〉in = 〈0|T
{
φI(x1)φI(x2) exp

(
i

∫ +∞

−∞
d4xLint(φI)

)}
|0〉

= 〈0|T {φI(x1)φI(x2)} |0〉+
g

3!

∫ +∞

−∞
d4x 〈0|T

{
φI(x1)φI(x2)φI(x)

3
}
|0〉+ . . . .

(6.2)

we need to evaluate the free n-point function in the interacting picture, with n increasing with the order
in the coupling constant g. We evaluate it at the level of creation and annihilation operator. We write
φI(x) = φ+(x) + φ−(x) with

φ+(x) =

∫
d3p

(2π)3
1√
2ωp

eipxa†p , φ−(x) =

∫
d3p

(2π)3
1√
2ωp

e−ipxap . (6.3)

The strategy is to move all the φ− operators past all the φ+ operators since φ− will annihilate the vacuum.

Definition 6.1. Normal ordering: A product of creation and annihilation operators is called normal
ordered, if all annihilation operators are to the right of creation operators. The normal ordering operations
is denoted as : . . . :, defined as

: (a†p + ap)(a
†
k + ak) := a†pa

†
k + a†pak+ : apa

†
k : +apak = a†pa

†
k + a†pak + a†kap + apak . (6.4)

The fundamental property of : . . . : is that the VEV of non-trivial normal ordered product vanishes.

Definition 6.2. Contracting two fields φI(xi), φI(xj) in a product of fields means removing them from the
product, and introducing a factor of the associated Feynman propagator DF (xi − xj) instead.
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6.2 Wick theorem

Theorem 6.1. Wick theorem: The time order product

T {φI(x1) . . . φI(xn)} =: φI(x1) . . . φI(xn) : + : all possible contraction : , (6.5)

where ti 6= tj for i 6= j.

Example 6.1.

T {φI(x1)φI(x2)φI(x3)φI(x4)} =: φI(x1)φI(x2)φI(x3)φI(x4) :

+DF (x1 − x2) : φI(x3)φI(x4) : +DF (x1 − x3) : φI(x2)φI(x4) :

+DF (x1 − x4) : φI(x2)φI(x3) : + . . . (total 6 similar terms)

+DF (x1 − x2)DF (x3 − x4) +DF (x1 − x3) +DF (x1 − x4)DF (x2 − x3) .

(6.6)

Proof:

We prove this theorem by reduction. First we prove it is true when n = 2.

T {φI(x1)φI(x2)} = φI(x1)φI(x2)Θ(t1 − t2) + φI(x2)φI(x1)Θ(t2 − t1)

= (: φI(x1)φI(x2) : +[φ−(x1), φ+(x2)])Θ(t1 − t2)

+ (: φI(x2)φI(x1) : +[φ−(x2), φ+(x1)])Θ(t2 − t1)

=: φI(x1)φI(x2) : +[φ−(x1), φ+(x2)]Θ(t1 − t2) + [φ−(x2), φ+(x1)]Θ(t2 − t1) .

(6.7)

The last two terms are exactly the Feynman propagator, as

DF (x1 − x2) = 〈0|T {φI(x1)φI(x2)} |0〉

= 〈0| (φ+(x1) + φ−(x1))(φ+(x2) + φ−(x2))Θ(t1 − t2) + (φ+(x2) + φ−(x2))(φ+(x1) + φ−(x1))Θ(t1 − t2) |0〉

= 〈0| [φ−(x1), φ+(x2)]Θ(t1 − t2) + [φ−(x2), φ+(x1)]Θ(t2 − t1) |0〉 .
(6.8)

Because the commutator [ap, a
†
q] = (2π)3δ(3)(~p − ~q) is no longer an operator (or proportional to identity

operator) anymore, the commutator [φ−(x1), φ+(x2)] is proportional to the identity operator, which means
that

DF (x1 − x2) = [φ−(x1), φ+(x2)]Θ(t1 − t2) + [φ−(x2), φ+(x1)]Θ(t2 − t1) . (6.9)

In this way, we prove that the Wick’s theorem is true when n = 2,

T {φI(x1)φI(x2)} =: φI(x1)φI(x2) : +DF (x1 − x2) . (6.10)

Now we assume that Wick’s theorem holds for n− 1 fields, and let t1 > ti for i = 2, . . . , n. Then

T {φI(x1) . . . φI(xn)} = φI(x1)T {φI(x2) . . . φI(xn)}

= (φ+(x1) + φ−(x1))) : φI(x2) . . . φI(xn) : +all possible contractions ,
(6.11)
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where we use the assumption that t1 > ti and the Wick theorem for n− 1 fields. Notice that for creation
operator, it is safe to move it into the normal order,

φ+(x1) : φI(xi1) . . . φI(xik) :=: φ+(x1)φI(xi1) . . . φI(xik) : . (6.12)

For the annihilation operator

φ−(x1) :φI(xi1) . . . φI(xik) :=

: φ−(x1)φI(xi1) . . . φI(xik) : +k contractions φ−(x1) with φI(xij ) j = 1, . . . k .
(6.13)

Every exchange of φ−(x1) and φ+(xij ) will generate a commutator [φ−(x1), φI(xij )]. The non trivial
commutator is

[φ−(x1), φ+(xij )]
t1>tij
= [φ−(x1), φ+(xij )]Θ(t1 − tij ) = DF (x1 − xij ) , (6.14)

which generates the right hand sides of the Wick’s theorem for n fields. As

〈0| :
k∏
i=1

φI(xi) : |0〉 = 0 , (6.15)

for k > 0, only fully contracted terms on the right hand side of Wick’s theorem contribute to VEV. We
finish the proof.

Remark 6.1. When considering the time order product T {φI(x1) . . . φI(xn)O(xn+1)}, with O(xn+1) a
polynomial in φI(xn+1), we need to give a make-sense definition of the time order product of
T {φI(x1) . . . φI(xn)φI(xn+1) . . . φI(xn+1)}, there are two options to consider this problem

• Consider normal operators O(xn+1) =: φI(xn+1)
n :

• Interpret as
φI(x)

n = lim
ε→±0

φI(t+ (n− 1)ε, ~x) . . . φI(t, ~x) . (6.16)

6.3 General lessons from φ3-theory

Example 6.2. Two-point function in φ3-theory with Lint = g
3!φ

3, perturbatively expanding the VEV of
time order product and list the terms in order of g

• g0: 〈0|T {φI(x1)φI(x2)} |0〉 = DF (x1 − x2)

• g1: i
3!

∫
d4x 〈0|T

{
φI(x1)φI(x2)φI(x)

3
}
|0〉 = 0 as no possible complete contractions.

• g2: the first non-trivial contribution at this point

(i)2

2!

(
1

3!

)∫
d4x

∫
d4y 〈0|T

{
φI(x1)φI(x2)φI(x)

3φI(y)
3
}
|0〉 , (6.17)

we need to count all the possible contractions term and we will introduce Feynman diagram to keep
track of it.
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6.3.1 Feynman diagrams

Here are the basic building blocks of Feynman diagrams

1. one vertex per internal coordinate (x, y, . . .) → the number of the vertices equal to the order in g.
For example, if we have two internal point, the contribution of this diagram is of order g2.

2. one point per external field, labelled by the spacetime coordinate (x1, . . . , xn) .

3. Contractions are indicated by lines connecting the corresponding points/vertices.

4. The valency of vertices (number of lines connected to it): the number of fields in corresponding
monomial in Lint.

Example 6.3. In φ3-theory, at the order of g2, the Feynman diagrams are

x1 x2 +

x1 x2

+ x1 x2

+

x1 x2

+
x1 x2

.

(6.18)

6.3.2 Bubbles

Bubbles are subgraphs that do not involve external points (x1, . . . , xn), and they can be factored out like

(
1 + + + . . .

)(
x1 x2 + x1 x2 + . . .

)
, (6.19)

where the first factor will be cancelled against the denominator.

6.3.3 Prefactor

• The 1
n! from expanding ei

∫+∞
−∞ d4xLint generically cancels against n! permutations of internal coordi-

nates giving same contributions. The factor n corresponds to the order of the coupling constant,
which corresponds to the number of the internal points. The permutation of the internal point then
cancels the factor from Taylor expansion.

Example 6.4. For example the Feynman diagram below actually represents two diagram

: x1 x2x y + x1 x2y x . (6.20)

• Additional multiplicities: due to identical fields at vertex. It is conventional to normalize interaction
terms by dividing by the number of the identical fields associate to a vertex.

Example 6.5. For example, the interaction terms are

g

3!
φ3 ,

λ

4!
φ4 ,

µ

2!3!5!
φ21φ

3
2φ

5
3 . (6.21)
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Generically, these prefactors will cancel against multiplicities.

Example 6.6. The Feynman diagram as the equation shows

x1

x2

x
y

z

x3

, (6.22)

comes from the term φ(x1)φ(x2)φ(x3)φ(x)
3φ(y)3φ(z)3, there are (3!)3 contraction corresponding to this

contraction pattern, which cancels the factor
(
1
3!

)3.
However, when the Feynman diagram exhibit symmetries, these cancellations can be incomplete. We need
the symmetry factors.

Example 6.7. The example of 1
n! from ei

∫
d4xLint not cancelling

x1 x2x y

z

w

, (6.23)

the contraction of point x1 with the internal point has 4 choice, the x2 has 3 choice, which 4× 3/4! = 1/2.
The symmetry factor is 1

2 .

Example 6.8. Example of 1
n! from normalization of interaction coupling constant not cancelling,

x1 x2x y . (6.24)

The contraction is

φ(x1)φ(x2)φ(x)φ(x)φ(x)φ(y)φ(y)φ(y) ,

(
1

3!

)2

(3!3) =
1

2
. (6.25)

Back to the 2-point function in φ3, up the order g2 has tree level Feynman diagram is

x1 x2 + (ig)2

12 x1 x2 +
1

2

x1 x2

+
1

2× 2
x1 x2

+
1

2× 3!
x1 x2

+
1

2× 2× 2× 2 x1 x2


(6.26)

6.3.4 Momentum space Feynman rules for time ordered products

A vertex labelled by the spacetime variable x comes with

• a factor of ig .
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• a
∫
d4x integration over the attached propagators.

Example 6.9. The Feynman diagram below,

w

x

y z

k

p
q

, (6.27)

if we do the Fourier transformation, we have

ig

∫
d4xDF (x− w)DF (x− y)DF (x− z) = ig×∫

d4x

∫
d4k

(2π)4
i

k2 −m2 + iε
eik(x−w)

∫
d4p

(2π)4
i

p2 −m2 + iε
eip(x−y)

∫
d4q

(2π)4
i

q2 −m2 + iε
eiq(x−z) .

(6.28)

The integral of x can be performed, by using the identity∫
d4xeix(k+p+q) = (2π)4δ(4)(k + q + p) . (6.29)

This tell us that the spacetime integral at vertex gives rise to momentum δ function. To keep trace of signs,
we will call e−ikx incoming momentum at the vertex labelled by x, eikx outgoing momentum at vertex x.
We hence accompany lines corresponding to propagators by arrows,

x w
k , (6.30)

where k is outgoing at x, incoming at w. We then have

w

x

y z

k
p

q
= (2π)4δ(4)(k + p+ q) , (6.31)

if the direction is inverse, the sign is also inverse. This tells us momentum is conserved at each vertex.

An external spacetime is not integrated. Each such point comes with a factor of eikx or e−ikx

from the attached propagator.

x

k . (6.32)

All connected lines come with factors

k =
i

k2 −m2 + iε
. (6.33)

All indeterminate momentum are integrated over
∫

d4k
(2π)3

.
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Possible symmetry factor

Example 6.10. The Feynman diagram

x1 x2p1 p2
k

q

, (6.34)

taking the value

1

2
(ig)2

∫
d4k

(2π)4

∫
d4p1
(2π)4

∫
d4p2
(2π)4

∫
d4q

(2π)4
(2π)4δ(p1 + k − q)(2π)4δ(q − p2 − k)

× eip1xe−ip2x2
i

p21 −m2 + iε

i

p22 −m2 + iε

i

q2 −m2 + iε

i

k2 −m2 + iε

=
1

2
(ig)2

∫
d4p1
(2π)4

∫
d4p2
(2π)4

∫
d4q

(2π)4
δ(4)(q − p2 − q + p1)× . . .

(6.35)

one delta function will always encode the conservation overall external momentum.

6.3.5 Momentum space Feynman rules for S matrix

Recall the LSZ formula

out 〈pk+1, . . . , pn|p1, . . . , pk〉in

=
n∏
i=1

(−i)(p2i −m2)

∫
d4x1e

ip1x1 . . .

∫
d4xk+1e

ipk+1xk+1out 〈Ω|T {φ(x1) . . . φ(xn)} |Ω〉in .
(6.36)

All the external propagators are cancelled (”amputated”).

All external momentum are put on-shell.

Example 6.11.

out 〈p2|p1〉in = (−i)(p21 −m2)(−i)(p22 −m2)

∫
d4x1e

−ip1x1
∫
d4x2e

ipx2×

1

2
(ig)2

∫
d4p̃1
(2π)4

∫
d4p̃2
(2π)4

∫
d4q

(2π)4
(2π)4δ(4)(p̃1 − p̃2)

ieip̃1x1

p̃21 −m2 + iε

ie−ip̃2x2

p̃22 −m2 + iε

× i

q2 −m2 + iε

i

(q − p̃1)2 −m2 + iε

=
1

2
(ig)2

∫
d4q

(2π)4
i

q2 −m2 + iε

i

(q − p1)2 −m2 + iε
(2π)4δ(4)(p1 − p2) .

(6.37)

We set
iM =

1

2
(ig)2

∫
d4q

(2π)4
i

q2 −m2 + iε

i

(q − p1)2 −m2 + iε
, (6.38)

from S = 1 + iT = 1 + iM (2π)δ(4)(
∑
pi).
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connected disconnected

Figure 6.1: Different type of Feynman diagram

Summary of the Feynman rules for S -matrix computations

1. internal line contribute i
p2−m2+iε

.

2. vertices yield factor of ig.

3. external lines carry on shell momentum into the diagram.

4. momentum conserved at each vertex.

5. integrate over undetermined momenta.

6.3.6 The connected S -matrix

The S-matrix from process k → n: p1i . . . pki → p1f , . . . , p
n
f will generically have contributions from subpro-

cess of the type
pk1i . . . p

kj
i → pn1

f . . . pnl
f ,

pk̃1i . . . p
k̃j
i → pñ1

f . . . pñl
f ,

(6.39)

i.e. product of process k̃ → ñ for k̃ < k and ñ < n. At the level of Feynman diagrams, these are
disconnected diagrams.

Example 6.12. See figure (6.1).

Such diagrams can be dropped if we are interested in the connect S-matrix.
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Chapter 7

Equation of motion for quantum fields

In Chapter 2 we introduce the Euler-Lagrangian equation

∂µ
∂L

∂(∂µφ)
− ∂L

∂φ
= 0 . (7.1)

In QFT, by imposing canonical commutations, EoM for quantum fields leads to the same Feynman rules
for evaluating VEVs of time order product as previously.

7.1 Differential operators and T -product

In this section we explore the relation

2x1 〈Ω|T {φ(x1) . . . φ(xn)} |Ω〉
?↔ 〈Ω|T {2φ(x1) . . . φ(xn)} |Ω〉 , (7.2)

where we ignore the in/out subscript since we use the |Ω〉 to denote the vacuum in the interacting theory.
The spatial derivative part is trivial. The thing that needs consideration is the time derivative part,

∂t 〈Ω|T
{
φ(x)φ(x′)

}
|Ω〉 = ∂t

(
〈Ω|φ(x)φ(x′) |Ω〉Θ(t− t′) + 〈Ω|φ(x′)φ(x) |Ω〉Θ(t′ − t)+

)
= 〈Ω|T

{
∂tφ(x)φ(x

′)
}
|Ω〉+ 〈Ω|φ(x)φ(x′) |Ω〉 δ(t− t′)− 〈Ω|φ(x′)φ(x) |Ω〉 δ(t− t′)

= 〈Ω|T
{
∂tφ(x)φ(x

′)
}
|Ω〉+ 〈Ω| [φ(x), φ(x′)] |Ω〉 δ(t− t′)

= 〈Ω|T
{
∂tφ(x)φ(x

′)
}
|Ω〉 ,

(7.3)

because [φ(x), φ(x′)] = 0.

∂2t 〈Ω|T
{
φ(x)φ(x′)

}
|Ω〉 = ∂t 〈Ω|T

{
∂tφ(x)φ(x

′)
}
|Ω〉 =

〈Ω|T
{
∂2t φ(x)φ(x

′)
}
|Ω〉+ 〈Ω| [∂tφ(x), φ(x′)] |Ω〉 δ(t− t′)

= 〈Ω|T
{
∂2t φ(x)φ(x

′)
}
|Ω〉 − iδ(4)(x− x′) ,

(7.4)

where we have used the commutation relation [∂tφ(x), φ(x
′)] = −iδ(3)(~x− ~x′). We called the second term

−iδ(4)(x− x′) as the contact term.

⇒ 2x 〈Ω|T
{
φ(x)φ(x′)

}
|Ω〉 = 〈Ω|T

{
2φ(x)φ(x′)

}
|Ω〉 − iδ(4)(x− x′) . (7.5)
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By reduction, we have the following formula

2x 〈Ω|T {φ(x)φ(x1) . . . φ(xn)} |Ω〉 = 〈Ω|T {2φ(x)φ(x1) . . . φ(xn)} |Ω〉

−
n∑
i=1

iδ(4)(x− xi) 〈Ω|T

φ(x1) . . . φ(xi−1)

∧

φ(xi)φ(xi+1) . . . φ(xn)

 |Ω〉 .
(7.6)

7.2 Schwinger Dyson equations

The Lagrangian of the real scalar field is

L =
1

2
∂µφ∂

µφ− 1

2
m2φ2 + Lint(φ) , (7.7)

whose EoM is
(2x +m2)φ(x)− ∂Lint

∂φ
= 0 . (7.8)

Combine it with the equation (7.6) we have

(2x +m2) 〈Ω|T {φ(x)φ(x1) . . . φ(xn)} |Ω〉 = 〈Ω|T
{
∂Lint
∂φ

φ(x)φ(x1) . . . φ(xn)

}
|Ω〉

− i
n∑
i=1

δ(4)(x− xi) 〈Ω|T

φ(x1) . . . φ(xi−1)

∧

φ(xi)φ(xi+1) . . . φ(xn)

 |Ω〉 ,
(7.9)

which is known as Schwinger-Dyson equation.

7.3 Evaluating VEVs of T-products in free theory via Schwinger-Dyson
equation

Take the two-point function as an example. In free case, the Schwinger-Dyson equation reduces to

(2x +m2) 〈0|T
{
φ(x)φ(x′)

}
|0〉 = −iδ(4)(x− x′) , (7.10)

which is the equation satisfied by Green function of the operator 22
x + m2. For n-point function, the

strategy is

• The operator (22
x +m2) action on n-point function reduces the number of fields.

• introduce that operators by involving our result for 2-point function, then integrate by parts.
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Example 7.1. For four-point function, rewriting as

〈0|T {φ(x1) . . . φ(x4)} |0〉 =
∫
d4xδ(4)(x− x1) 〈0|T {φ(x)φ(x2)φ(x3)φ(x4)} |0〉

=

∫
d4xi(22

x +m2)DF (x− x1) 〈0|T {φ(x)φ(x2)φ(x3)φ(x4)} |0〉

= i

∫
d4xDF (x− x1)(22

x +m2) 〈0|T {φ(x)φ(x2)φ(x3)φ(x4)} |0〉

=

∫
d4xDF (x− x1)

(
δ(4)(x− x2) 〈0|T

{
φ(x3)φ(x4)

}
|0〉

+δ(4)(x− x3) 〈0|T
{
φ(x2)φ(x4)

}
|0〉+ δ(4)(x− x4) 〈0|T

{
φ(x2)φ(x2)

}
|0〉
)

= DF (x1 − x2)DF (x3 − x4) +DF (x1 − x3)DF (x2 − x4) +DF (x1 − x4)DF (x2 − x3) .

(7.11)

7.4 Evaluating n-point function in interacting theory via Schwinger-
Dyson equation

The strategy is the same as in free case. Now procedures leads also to terms with increased number of
fields due to the Lint term.

Example 7.2. 2 point function in φ3 theory, where Lint =
g
3!φ

3.

〈Ω|T {φ(x1)φ(x2)} |Ω〉 =
∫
d4xδ(4)(x− x1) 〈Ω|T {φ(x)φ(x2)} |Ω〉

=

∫
d4xi(2x +m2)DF (x− x1) 〈Ω|T {φ(x)φ(x2)} |Ω〉

= i

∫
d4xDF (x− x1)

(
〈Ω|T

{
∂Lint
∂φ

φ(x2)

}
|Ω〉 − iδ(4)(x− x2)

)
.

(7.12)

Contact terms and LSZ

We have shown that

out 〈f |i〉in = i

∫
d4x1e

ip1x1 . . . i

∫
d4xeipnxnout 〈Ω|T

{
(2x +m2)φ(x1) . . . φ(2x +m2)φ(xn)

}
|Ω〉in , (7.13)

where the red part is

(2x +m2) . . . (2x +m2)out 〈Ω|T {(φ(x1) . . . φ(xn)} |Ω〉in

+ terms involving δ function δ(4)(xi − xj) multiplying

time ordered produce of fields independent of xi and xj ,

(7.14)

which give rise to the contributions∫
d4xi

∫
d4je

±ipixie±ipjxjδ(4)(xi − xj) = δ(4)(pi ± pj) , (7.15)
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where+ : both outgoing or incoming, vanishes as pi,j > 0

− : one incoming, one outgoing, trivial scattering process, pi = pj , excluded in our analysis.
(7.16)

This analysis tells us we can drop the additional terms as claimed (case of pi = pj requires further
reasoning.)
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Chapter 8

Irreducible unitary representations of
the Poincaré group

8.1 The Poincaré group P0 as a symmetry of fundamental interactions

The inhomogeneous (full) Poincaré group is

P = R4 1 O(1, 3) , (8.1)

where R4 represents the translation x→ x+a and O(1, 3) is the Lorentz group of all linear transformation
of R4 that preserves the Minkowski metric. The multiplication rule and the inverse are

(a, S) ◦ (b, T ) = (a+ Sb, S ◦ T )

(a, S)−1 = (−S−1a, S−1) .
(8.2)

O(1, 3) has several components, we will require that

P0 = R4 1 SO↑(1, 3) , (8.3)

where SO↑ is proper orthochrous Lorentz group, which is a connected component of group O(1, 3). It
containing the identity. In particular, timer reversal T , space inversion P in this subgroup.

8.2 Wigner’s theorem and Bargmann’s theorem

Physical states are associated to rays, i.e. element of H up to phase. The space of rays is denoted as
R = H /N where N is the equivalence relation: for φ, ψ ∈ H , φ ∼ ψ ⇐⇒ ∃ θ ∈ [0, 2π), φ = eiθψ.
Recall that given r, r′ ∈ R, transition probability P from r to r′ is independent of choice of representations.
P = | 〈φ′|φ〉 |2 for any φ, φ′ ∈ H such that [φ] = r, [φ′] = r.

Definition 8.1. P0 is a symmetry means that for any element of P0 gives rise to a map R → R, which
preserves probabilities, i.e. given g ∈ P0, ∃T (g) : R → R such that for r, r′ ∈ R,

|
〈
r
∣∣r′〉 |2 = |

〈
T (g)r

∣∣T (g)r′〉 |2 . (8.4)
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Theorem 8.1. Wigner’s theorem: Any bijection R → R which conserves the transition probabilities of
uni rays can be represented by an operator on H that is either

1. linear and unitary

2. anti-linear and anti-unitary, i.e. U(ξ |φ〉+ η |ψ〉) = ξ̄U |φ〉+ η̄U |ψ〉 (anti-linear), 〈Uφ|Uψ〉 = ¯〈φ|ψ〉
(anti-unitary).

Remark 8.1. Symmetries connected continuously to the identity (such as rotations, element of SO↑(1, 3))
must be represented by linear unitary operator because the identity is linear and unitary.

Given g1, g2 ∈ P0 acting with U(g2)U(g1) or with U(g1 ◦g2) should give rise to the same physical state,
which means that U(g2)U(g1) = eiφ(g1,g2)U(g2 ◦g1). We conclude that P0 must be projectively represented
on H .

Theorem 8.2. Bargmann’s theorem: Every projective representation of the universal cover P̂0 of P0 can
be lifted to a unitary representation of P̂.

This theorem tell us that H should furnish unitary representation U of P̂0. i.e.

U : P̂0 → Aut(H )

(a,Λ) 7→ U(a,Λ) ,
(8.5)

such that U ((a2,Λ2) ◦ (a1,Λ1)) = U(a2,Λ2) ◦ U(a1,Λ1).

8.3 Particles

H can be decomposed into eigenspace with respect to a maximal set of mutually commuting operators
(including H, ~P ). Let |ψ〉 lie in such an eigenspace (in particular Pµ |ψ〉 = pµ |ψ〉). In our definition
of particle, |ψ〉 and U(a,Λ) |ψ〉 should not correspond to different particles, which guides us to study
irreducible representation of P̂0.

Definition 8.2. The subspace Hi ⊂ H is irreducible if

• it is invariant under action of P̂0.

• no proper subset of Hi other than {0} has above property.

8.4 The representation of spacetime translation

The spacetime translation can be represented as

U(a,1) = eiaµp̂
µ
, p̂µ = (H, ~p). (8.6)

We can see that p̂µ is self-adjoint, which means that we can diagonalize the Hilbert space H as H =⊕
V~p, where V~p is the eigensubspace labeled by spatial momentum ~p. Let |~p〉 ∈ V~p, 〈|~p〉〉 is a irreducible

representation of spacetime translation. The action

U(a,1) |~p〉 = eiap |~p〉 ⇒ 〈|~p〉〉 is closed under the action of U(a,1).
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The fact that irreps (irreducible representations) are one dimensional follows from the theorem that complex
irreps of Abelian group is one dimensional. As we can decompose any element of (a,Λ) ∈ P0 as (a,Λ) =

(a, 1) ◦ (0,Λ), we can focus on the spacetime rotation U(Λ) := U(0,Λ).

8.5 Unitary representation of the Lorentz group via Wigner’s method
of induced representations

Theorem 8.3. The only finite dimensional unitary representation of the Lorentz group is the trivial
representation.

Example 8.1. Consider the 4 vector representation, the Lorentz boost along the x axis takes the following
form,

A =


coshβx sinhβx

sinhβx coshβx

1

1

 , (8.7)

however, A†A 6= 1, A is not a unitary matrix.

The method of induced representation (Wigner)

The strategy is

1. study a subgroup (called the little group) of the Lorentz group which does have finite dimensional
representations.

2. lift these representations to the full Lorentz group, which is so called the induced representation.

In physics, we are interested little group Hk
m. For m > 0, choose the momentum kµ ∈ R4 such that

kµkµ = m2 and k0 > 0, we define Hk
m as

Hk
m = {Λ ∈ SO↑(1, 3)|Λµνkν = kµ} , (8.8)

which is the set of the spacetime rotation keeping the four momentum kµ invariant. It is easy to verify it
is indeed a subgroup of SO↑(1, 3). Physically, m will correspond to the mass of the particle, k is its four
momentum. We begin our discussion by considering momentum eigensubspace of H with momentum k

and m > 0. A convenient choice is the particle at rest: k = (m, 0, 0, 0). Obviously the little group is
H

(m,0,0,0)
m = SO(3), because only boost can generate 3-momentum. Since the little group is now SO(3), its

double cover is SU(2). The irreducible representation of SU(2)is classified by non-negative half-integers
or integers J ∈ 1

2N ∪ {0}, which is so called the spin of (2J + 1) representation. If we restrict J ∈ N,
actually it is the irreps of SO(3). A state transforming in the representation J of SU(2)carries an index
σ ∈ {−J, . . . , J}. We denoted as |ψk,σ〉 such that p̂µ |ψk,σ〉 = kµ |ψk,σ〉. For two rotations R1, R2 ∈ Hk

m,
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because

U(R1) |ψk,σ〉 =
J∑

σ′=−J
D(R1)σ′σ

∣∣ψk,σ′
〉

U(R2)U(R1) |ψk,σ〉 = U(R2)

(
J∑

σ′=−J
D(R1)σ′σ

∣∣ψk,σ′
〉)

=

J∑
σ′=−J

J∑
σ′′=−J

D(R1)σ′σD(R2)σ′′σ′
∣∣ψk,σ′′

〉
.

=

J∑
σ′′=−J

D(R2 ◦R1)σσ′′
∣∣ψk,σ′′

〉
= U(R2 ◦R1) |ψk,σ〉 .

(8.9)

Note that D†(R)D(R) = 1 as the irreps are unitary. We finish the first step of the strategy.

Next, for any p ∈ R4 such that p2 = m2 for a fiducial Lorentz transformation L(p),

L(p)µνk
ν = pµ . (8.10)

Define |ψp,σ〉 = U(L(p)) |ψk,σ〉. |ψp,σ〉 is a momentum eigenstate as

U(a,1) |ψp,σ〉 = U(a,1)U(0, L(p)) |ψk,σ〉

= U(a, L(p)) |ψk,σ〉

= U(0, L(p))U(L−1(p)a,1) |ψk,σ〉

= U(L(p))ei(L
−1(p)a,k) |ψk,0〉

= ei(a,L(p)k) |ψp,σ〉 ,

(8.11)

where (·, ·) is the Minkowski inner product and we used the multiplication rule to extract the result. We
conclude that the subspace

〈
{|ψp,σ〉 |p ∈ R4 , p2 = m2 , p0 > 0 , σ ∈ {−J, . . . , J}}

〉
, (8.12)

furnishes a unitary irrep of P0,

1. U(a, 1) |ψp,σ〉 = eiap |ψp,σ〉.

2.
U(Λ) |ψp,σ〉 = U(Λ)U(L(p)) |ψk,σ〉

= U(L(Λp))U(L−1(Λp))U(ΛL(p)) |ψk,σ〉

= U(L(Λp))W (Λ, p) |ψk,σ〉 ,

(8.13)

where we define W (Λ, p) := U(L−1(Λp))U(ΛL(p)) which maps the momentum k → p → Λp → k, then
W (Λ, p) ∈ Hk

m. From the previous discussion, using that conclusion that

W (Λ, p) |ψk,σ〉 =
J∑

σ′=−J
D(W (Λ, p))σ′σ

∣∣ψk,σ′
〉
, (8.14)
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we can write

U(Λ) |ψp,σ〉 = U(L(Λ, p))
J∑

σ′=−J
D(W (Λ, p))σ′σ

∣∣ψk,σ′
〉

=
J∑

σ′=−J
D(W (Λ, p))σ′σ

∣∣ψΛp,σ′
〉
. (8.15)

It is easy to check that under this definition U(Λ1)U(Λ2) = U(Λ1Λ2).

Remark 8.2. We can see that through this way we could introduce the spin indices naturally and the spin
degrees of freedom naturally separate with the momentum (spacetime) degrees of freedom. The representation
theory shows its strong power again.

Theorem 8.4. This representation is irreducible.

Proof: The proof is direct because of the definition of the coefficient D(R).

Remark 8.3. The representation space
〈
{|ψp,σ〉 |p ∈ R4 , p2 = m2 , p0 > 0 , σ ∈ {−J, . . . , J}}

〉
is infinite

dimensional.

We can introduce an inner product on the representation space via

〈
ψp,σ

∣∣ψp′,σ′
〉
= (2π)32ωpδ

(3)(~p− ~p′)δσσ′ . (8.16)

We need to check if such an inner product is Lorentz invariant. Consider

δ(4)(p− p′) = δ(p0 −
√
m+ ~p2)δ(3)(~p− ~p′)

= 2p0δ(p2 −m2)θ(p0)δ(3)(~p− ~p′)
(8.17)

From equation (1.27), we know that the invariant measure is∫
d3~p√
~p2 +m2

. (8.18)

For the three dimensional delta function, we define it by

F (~p) =

∫
F (~p′)δ(3)(~p− ~p′)d3~p′ , (8.19)

this guides us that we could define the so called invariant delta function under the Lorentz transformation
as √

~p2 +m2δ(3)(~p− ~p′) =
√
(Λ~p)2 +m2δ(3)(Λ~p− Λ~p′) , (8.20)

⇒ 2p0δ(3)(~p− ~p′) = 2(Λp)0δ(3)(Λ~p− Λ~p′) . (8.21)
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We then check if such an representation is unitary,

〈U(Λ)ψp1,σ1 |U(Λ)ψp2,σ2〉 =
J∑

σ′
1,σ

′
2=−J

D∗(W (Λ, p1))σ′
1σ1
D(W (Λ, p2))σ′

2σ2

〈
ψΛp1,σ′

1

∣∣∣ψΛp2,σ′
2

〉

=
J∑

σ′
1,σ

′
2=−J

D∗(W (Λ, p1))σ′
1σ1
D(W (Λ, p2))σ′

2σ2
(2π)32(Λp1)

0δ(3)(Λ~p1 − Λ~p2)δσ′
1σ

′
2

=

J∑
σ=−J

D∗(W (Λ, p1))σσ1D(W (Λ, p2))σσ2(2π)
32p0δ(3)(~p1 − ~p2) ,

(8.22)

by using the unitary of the D matrix,
∑J

σ=−J D
∗(W (Λ, p1))σσ1D(W (Λ, p2))σσ2 = δσ1σ2 , we conclude that

〈U(Λ)ψp1,σ1 |U(Λ)ψp2,σ2〉 = 〈ψp1,σ1 |ψp2,σ2〉 , (8.23)

representation U(Λ) is indeed a unitary representation.

8.6 Transformation of free creation and annihilation operators

Recall that a†(p, σ) |0〉 = 1√
2ωp

|~p, σ〉 = 1√
2ωp

|ψp,σ〉. The transformation of a† follows from that of ~ψp,σ.
We assume that the vacuum is Lorentz invariant

U(Λ) |0〉 = |0〉 . (8.24)

The transformation of |ψ〉p,σ,

U(Λ) |ψp,σ〉 =
J∑

σ′=−J
D(W (Λ, p))σ′σ

∣∣ψΛ~p,σ

〉
⇒

√
2ωpU(Λ)a†(~p, σ)U−1(Λ) =

√
2ωΛp

J∑
σ′=−J

D(W (Λ, p))σ′σa
†(Λ~p, σ′)

⇒ U(Λ)a†(p, σ)U−1(Λ) =

√
2ωΛp

2ωp

J∑
σ′=−J

D(W (Λ, p))σ′σa
†(Λp, σ′)

⇒ U(Λ)a(p, σ)U−1(Λ) =

√
2ωΛp

2ωp

J∑
σ′=−J

D∗(W (Λ, p))σ′σa(Λp, σ
′)

(8.25)

8.7 Transformation of free massive scalar quantum field

The scalar representation is spin J = 0 representation of SO(3), the D matrix

D00(R) = 1 ⇒ can drop the σ index .
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The scalar field constructed by a and a† is

φ(x) =

∫
d3p

(2π)3
1√
2ωp

(
ape

−ipx + a†pe
ipx
)

U(Λ)φ(x)U−1(Λ) =

∫
d3p

(2π)3
1√
2ωp

√
2ωΛp

ωp

(
aΛpe

−ipx + a†Λpe
ipx
)

p̃=Λp
=

∫
d3p̃

(2π)3

√
2ωp̃

2ωp̃

(
ap̃e

−i(Λ−1p̃,x) + a†p̃e
i(Λ−1p̃,x)

)
=

∫
d3p

(2π)3
1√
2ωp

(
ape

−i(p,Λx) + a†pe
i(p,Λx)

)
= φ(Λx) ,

(8.26)

where we have used the property of the invariant measure. This is the first important result, we get the
transformation property of the scalar field compatible with the Lorentz invariant theory.

8.8 Construction of massive vector field

8.8.1 Objective and Ansatz

Objective: construct a quantum vector field Aµ(x) such that

U(Λ)Aµ(x)U−1(Λ) = D(Λ−1)µνA
ν(Λx) . (8.27)

Remark 8.4. Pay attention the notation here, D is the representation of little group Hk
m, and D is the

finite dimensional representation of SO↑(1, 3).

The group structure requires

U(Λ1)U(Λ2)A
µ(x)U(Λ−1

2 )U(Λ−1
1 ) = D

[
(Λ1Λ2)

−1
]µ
ρ
Aρ(Λ1Λ2x) . (8.28)

Remark 8.5. The fields are not constrained to transform in unitary representations.

What type of particles should Aµ package? A natural choice is the spin 1 (J = 1) massive particle.

Aµ(x) =

∫
d3p

(2π)3
1√
2ωp

+1∑
σ=−1

(
εµσ(p)ap,σe−ipx+ εµσ

∗(p)a†p,σe
ipx
)
, (8.29)

where εµν is the polarization tensor and the conjugate in the second term is to make the field Hermitian.
We will show what is the requirement of the polarization tensor should satisfy in the later discussion.

8.8.2 What property do the function εµσ(p) have to satisfy?

Our goal is that
U(Λ)Aµ(x)U−1(Λ) = D(Λ−1)µνA

ν(Λx) , (8.30)
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putting the Ansatz into the equation, and recall the transformation property of a and a†,

U(Λ)Aµ(x)U−1(Λ) =

∫
d3p

(2π)3
1√
2ωp

+1∑
σ=−1

[
εµσU(Λ)ap,σU

−1(Λ)e−ipx + εµσ
∗(p)U(Λ)a†p,σU

−1(Λ)eipx
]

=
d3p

(2π)3

√
2ωΛp

2ωp

∑
σ,σ′

[
εµσ(p)D

∗
σ′σ(W (Λ, p))aΛp,σ′e−ipx

+εµσ
∗(p)Dσ′σ(W (Λ, p))a†Λp,σ′e

ipx
]

= D(Λ−1)µν

∫
d3p

(2π)3

√
2ωp

2ωp

[
ενσ(p)ap,σe

−ipΛx + ενσ
∗(p)a†p,σe

ipΛx
]

p̃=Λ−1p
= D(Λ−1)µν

∫
d3p̃

(2π)3

√
ωΛp̃

2ωp̃

[
ενσ(Λp̃)aΛp̃,σe

−ip̃x + ενσ
∗(Λp̃)a†Λp̃,σe

ip̃x
]
.

(8.31)
Compare the two sides of the equation, we have∑

σ

D∗
σ′σ(W (Λ, p))εµσ(p) =

∑
ν

D(Λ−1)µνε
ν
σ′(Λp) . (8.32)

Pay attention about the position of σ′. We split this relation in two steps:

1. Note that εµσ(k) fixes εµσ(p) as we could choose Λ such that Λp = k ⇒ Λ = L−1(p). Based on the
definition of W

W (Λ, p) = L(Λp)−1ΛL(p) ⇒ W (L−1(p), p) = L
(
L−1(p)p

)−1
L−1(p)L(p) = 1 ,

⇒
∑
σ

D∗
σ′σ(1)ε

µ
σ(p) =

∑
σ

δσ′σε
µ
σ(p) = εεσ′(p) =

∑
ν

D(L(p))µνε
ν
σ′(k)

(8.33)

2. Derive the relation for εµσ(k): we choose p = k, Λ = ρ ∈ Hk
m,

W (ρ, k) = L(ρk)−1ρL(k)ρ ,⇒
∑
σ

D∗
σ′σ(ρ)ε

µ
σ(k) =

∑
ν

D(ρ−1)µνε
ν
σ′(ρk)∑

σ

D†
σσ′(ρ)ε

µ
σ(k) =

∑
ν

D(ρ−1)µνε
ν
σ′(k) .

(8.34)

The claim 1 and 2 is equivalent to the equation of ε (8.32).

Remark 8.6. The condition (8.32) as well as the equivalence (1,2) hold for all D , which is the finite
dimensional (non unitary for D non-trivial) irrep of SO↑(1, 3) under which the quantum transforms. And
D is the finite dimensional unitary irrep of Hk

m under which the states transform.

8.8.3 Solving the constraints on εµσ(k) for massive vector field

By using the unitarity of D, we have D†
σσ′(ρ) = D(ρ−1)σσ′ , the relation (8.32) is∑

σ

εµσ′(k)D(ρ−1)σσ′ =
∑
ν

D(ρ−1)µνε
ν
σ′(k) . (8.35)

54



D matrix is 3 × 3 matrix, while D matrix is 4 matrix, which requires that ε is a 4 × 3 matrix with 4

spacetime indices and 3 spin indices, setting

ε(k) =

[
a b c

A3×3

]
. (8.36)

Remember that we are now considering the massive vector field with four momentum k = (m, 0, 0, 0), the
element ρ should keep the time component invariant, which means that the D matrix can be written as

D(ρ−1) =

[
1

D(ρ−1)3×3

]
. (8.37)

The relation expressed in matrix notation is

ε(k)D(ρ−1) = D(ρ−1)ε(k) =

[
a b c

D(ρ−1)A

]
, (8.38)

such a relation holds for arbitrary ρ ∈ SO(3). Notice that the spin-1 representation for the little group
Hk
m is the same as SO(3) representation, which means that D(ρ) = D(ρ), in this condition, the relation of

ε(k) can be written as

ε(k)D(ρ−1) = D(ρ−1)ε(k) =

[
a b c

D(ρ−1)A

]
. (8.39)

Since this relation holds for all ρ ∈ SO(3), we consider the infinitesimal transformation. The infinitesimal
rotation around x-axis and z-axis are

D(ρx) =

1 1 −ε
ε 1

 , D(ρz) =

1 −ε
ε 1

1

 , (8.40)

which gives

ε(k)D(ρx) =

[
a b c

A

]1 0 0

0 1 −ε
0 ε 1

 =

[
a b+ εc − εb+ c

AD(ρx)

]
=

[
a b c

D(ρx)A

]
, (8.41)

we conclude that b = c = 0. If we choose ρ = ρz, we can see a = 0, so the effective part is A. This tell us
that (

m 0 0 0
)(0 0 0

A

)
= 0 (8.42)

. The more general formula is
kµε

µ
σ(k) = 0 . (8.43)

Here the proof is not strict and general, though the conclusion is correct. The left relation is AD(ρ) =

AD(ρ) for all ρ in SO(3). Based on Schur’s lemma, the solution for A must be proportional to the identity.
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8.8.4 What is ε mathematically

The equation satisfied by εµσ(k) is∑
σ

D∗
σ′σ(W (Λ, p))εµσ(p) =

∑
ν

D(Λ−1)µνε
ν
σ′(Λp) , ∀ρ ∈ Hk

m . (8.44)

Consider

• group G representation (V, ρG) such that ρG : G→ Aut(V )

• subgroup H ⊂ G with representation (W,ρH)

• a map φ :W → V , called the equivalent map (or an intertwiner) if for h ∈ H, the map commutes:

W V

W V

φ

ρH(h) ρG|H(h)

φ

, i.e. ρG|H ◦ φ = φ ◦ ρH . (8.45)

In fact ε plays the role of φ, which relates the spin space and the spacetime coordinate space. Explicitly,
let {vi} be a basis for V . {wα} is a basis for W . The equivalent equation can be written as

[ρG(h) ◦ φ]wα = ρG(h)
∑
i

φiαvi =
∑
i

φiαρG(h)vi =
∑
i,j

φiα[ρG(h)]jivj

= [φ ◦ ρH(h)]wα = φ
∑
β

[ρH(h)]βαwβ =
∑
β,j

[ρH(h)]βαφjβvj

⇒
∑
i

ρG(h)jiφiα =
∑
β

φjβρH(h)βα .

(8.46)

Hence when does ε exist is equivalent to ask when D and D |Hk
m

be intertwined. By representation theory,
let (W,ρW ) be an irrep of H, decompose V into irrep of H

V = V1 ⊕ . . .⊕ Vn , ρhi : Vi → Vi , ∀h ∈ H . (8.47)

For a non-trivial intertwiner φ :W → V to exist, ρW must occur among the ρi, say ρi ∼= ρw, Vi ∼=W .

Example 8.2. G is reducible 4-vector reps of SO↑(1, 3), V = R4, as

V = R4 = R ⊕ R3 , (8.48)

where the 1 dimensional space is the time component invariant under the group SO(3), R3 is the spatial
component that transforms in spin-1 rep of SO(3). We conclude that it can package spin 1 fields using
massive vector fields and also the spin 0 fields.
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8.9 Massless vector bosons and gauge invariant

8.9.1 The little group at m = 0

Convenient choice of k for k2 = 0 to define the little group is k = (E, 0, 0, E),

Hk
0 = {Λ ∈ SO↑(1, 3)|Λµνkν = kµ} = ISO(2) , (8.49)

which is the group of isometries of the Euclidean plane ISO(2) = R2 1 SO(2). This group contains two
Abelian subgroup R2, corresponding to the translation S(α, β) ∈ R2, and rotation R(θ) ∈ SO(2). The
rotation R ∈ SO(2) around z-axis can be represented as

D(R)µν(θ) =


1

cos θ sin θ

− sin θ cos θ

1

 (8.50)

. The translation can be represented as

D(S)µν(α, β) =


1 + ξ α β −ξ
α 1 0 −α
β 0 1 −β
ξ α β 1− ξ

 , ξ =
α2 + β2

2
. (8.51)

Remark 8.7.
R(θ)S(α, β)R−1(θ) = S (α cos θ + β sin θ,−α sin θ + β cos θ) , (8.52)

i.e. R2 is a normal subgroup of ISO(2).

We can study the reps of R2 and SO(2) separately and then lift them to ISO(2). The fact that (follows
from Remark 8.7) any non-trivial representation of R2 lift to an infinite dimensional representation of
ISO(2). Such representations would imply a quantum number corresponding to an infinite number of
degrees of freedom in addition to momentum p, which is not observed. Hence, we restrict ourselves to the
representations of ISO(2) which restrict to trivial reps of R2. Finite dimensional irreps of SO(2) is one
dimensional since SO(2) is Abelian, labelled by σ ∈ Z, which gives

D(R(θ)) |ψk,σ〉 = eiσθ |ψk,σ〉 , (8.53)

where we will show later that for double cover of SO(2), σ ∈ 1
2Z. Overall

D(W (θ, α, β)) |ψk,σ〉 = D(S(α, β) ◦R(θ)) |ψk,σ〉

= D(S(α, β))D(R(θ)) |ψk,σ〉 = D(S(α, β))eiσθ |ψk,σ〉 = eiσθ |ψk,σ〉 ,
(8.54)

where the have already used the conclusion that the representation of S(α, β) is trivial. Defining |ψp,σ〉 =
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U(L(p)) |ψk,σ〉, we can see that

U(Λ) |ψp,σ〉 = U(Λ)U(L(p)) |ψk,σ〉 = U(L(Λp))U(L−1(Λp))U(ΛL(p)) |ψk,σ〉

= U(L(Λp))D (W (θ(Λ, p), α(Λ, p), β(Λ, p))) |ψk,σ〉

= U(L(Λp))eiσθ(Λ,p) |ψk,σ〉 = eiσθ(Λ,p) |ψΛp,σ〉 .

(8.55)

The quantum number σ, specifying SO(2) irrep, is called the helicity. Unlike the 2-component of spin, it
is Lorentz invariant. It is similar to spin projected onto direction of motion, but Lorentz invariant. While
the irreps of SO(2) are one dimensional, parity maps σ → −σ. For interaction that preserves parity, such
as QED, we consider |ψp,±σ〉 as describing the same particles.

Example 8.3. Photon has σ = ±1.

8.9.2 Transformation of a†p,σ, ap,σ

Following similar procedure as in the section (8.6), we have

U(Λ)a†p,σU
−1(Λ) =

√
2ωΛp√
2ωp

eiσθ(Λ,p)a†Λp,σ ,

U(Λ)ap,σU
−1(Λ) =

√
2ωΛp√
2ωp

e−iσθ(Λ,p)aΛp,σ .

(8.56)

8.9.3 Construction of massless quantum field

Massless scalar field

σ = 0, via the same calculation as in the massive case, the Lorentz transformation of the field is

U(Λ)φ(x)U−1(Λ) = φ(Λx) . (8.57)

Massless vector field

We expect this to describe particles of helicity σ = ±1. As we constructed before,

Aµ =

∫
d3p

(2π)3
1√
2ωp

∑
σ=±1

[
εµσ(p)ap,σe

−ipx + εµσ
∗a†p,σe

ipx
]
, (8.58)

we need to find ε to let
U(Λ)Aµ(x)U−1(Λ) = D(Λ−1)µνA

ν(Λx) . (8.59)

Consider decomposition of 4-vector rep. into SO(2) irrep:

C4 = C0 ⊕ C+1 ⊕ C−1 ⊕ C0 , (8.60)

where C4 is the 4-vector rep. of SO↑(1, 3), C0 is the trivial rep. , C+1 is the σ = +1 irrep, C−1 is the
σ = −1 irrep. and C0 is the trivial rep. again. We need to lift these representation to the representation
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of ISO(2) on which R2 acts trivially. Explicitly, for

C4 = C0 ⊕ C+1 ⊕ C−1 ⊕ C0 =

〈
1

0

0

0


〉

⊕

〈
0

1

i

0


〉

⊕

〈
0

1

−i
0


〉

⊕

〈
0

0

0

1


〉
. (8.61)

A simple choice of the polarization tensor is

⇒ εµ± =
1√
2


0

1

±i
0

 (8.62)

such that the diagram
W V

W V

φ

ρH(h) ρG|H(h)

φ

, (8.63)

commutes for H = SO(2). Explicitly,

w±


0

1

±i
0



e±iθw± e±iθ


0

1

±i
0



ρH(θ) ρG(θ) . (8.64)
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All available choice has been made. Consider R2 � ISO(2) = R2 1 SO(2), the representation restricts on
R2 is trivial representation, however, it is not trivial when lift to the group ISO(2),

w±


0

1

±i
0



w±


0

1

±i
0

 6=


1 + ξ α β −ξ
α 1 0 −α
β 0 1 −β
ξ α β 1− ξ




0

1

±i
0

 =


α± iβ

1

±i
α± β



ρH(S(α,β)) ρG(θ) . (8.65)

This seems tell us that we cannot construct a massless vector filed out of helicity ±1 creation/annihilation
operators. Where is the wrong? This is a very important and interesting question. Let’s choose

ε±(k) =
1√
2


0

1

±i
0

 , (8.66)

D(R(θ))ε±(k) = e±iθε±(k)

D(S(α, β))ε±(k) = ε±(k) +
1√
2
(α± iβ)

1

E


E

0

0

E

 ,
(8.67)

and define εµσ(p) = L(p)µνενσ(k), where we drop the D to keep the equation clean.

U(Λ)Aµ(x)U−1(Λ) =∫
d3p

(2π)3
1√
2ωp

√
2ωΛp√
2ωp

∑
σ=±1

[
εµσ(p)e

−iσθ(Λ,p)aΛp,σe
−ipx + εµσ

∗(p)eiσθ(Λ,p)a†Λp,σe
ipx
]

p̃=Λp
=

∫
d3Λ−1p̃

(2π)3

√
2ωp̃

2ωΛ−1p̃

∑
σ=±1

[
εµσ(Λ

−1p̃)eiσθ(Λ,Λ
−1p̃)ap̃,σe

−iΛ−1p̃x + εµσ
∗(Λ−1p̃)eiσθ(Λ,Λ

−1p̃)a†p̃,σe
iΛ−1p̃x

]
.

(8.68)
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We need to evaluate ε(Λ−1p),

εσ(Λ
−1p) = L(Λ−1p)εσ(k) = Λ−1L(p)L(p)−1ΛL(Λ−1p)εσ(k)

= Λ−1L(p)W (Λ,Λ−1p)εσ(k)

= Λ−1L(p)S(α(Λ,Λ−1p), β(Λ,Λ−1p))R(θ(Λ,Λ−1p))εσ(k)

= Λ−1L(p)eiσθ(Λ,Λ
−1p)

[
εσ(k) +

1√
2E

(α+ iσβ)(Λ,Λ−1p)k

]
= Λ−1eiσθ(Λ,Λ

−1p)

[
εσ(p) +

1√
2E

(α+ iσβ)(Λ,Λ−1p)p

]
.

(8.69)

Substitute it into the equation (8.68), the expression becomes

(Λ−1)µνA
ν(Λx) +

1

2E

∫
d3p

(2π)3
1√
2ωp

(
Λ−1p

)µ ∑
σ=±1

[
(α+ iσβ)(Λ,Λ−1p)ap,σe

−i(Λ−1p,x)

+(α− iσβ)a†p,σe
i(Λ−1p,x)

]
= (Λ−1)µνA

ν(Λx) + ∂µΩ(x,Λ) ,

(8.70)

The gauge transformation appears naturally! Magic! If a Lagrangian A () with an action is invariant under

1. A(x) → Λ−1A(Λx),

2. A(x) → A(x) + ∂ω,

such a Lagrangian will lead to a Lorentz invariant theory. The quantum field we have defined satisfies the
following quantities

2Aµ(x) = 2
∫

d3p

(2π)3
1√
2ωp

+1∑
σ=−1

(
εµσ(p)ap,σe

−ipx + εµσ
∗(p)a†p,σe

ipx
)

=

∫
d3p

(2π)3
p2

1√
2ωp

+1∑
σ=−1

(
εµσ(p)ap,σe

−ipx + εµσ
∗(p)a†p,σe

ipx
)
= 0 ,

(8.71)

where we used the massless on-shell condition. For the polarization tensor ε±(k) = 1√
2
(0, 1,±i, 0)T , ε±(p) =

L(p)ε±(k), where L(p) can be chosen as the combination of spatial rotation and boost, L(p) = R(~p)B(p),
where R(~p) is the rotation of z-axis into ~p direction and B(p) is the boost along the z-direction, such that

B(p)


E

0

0

E

 =


p0

0

0

p0

 , (8.72)

this gives ε±(p) = R(~p)ε±(k) at t and z component of ε±(k) vanishes. The rotation of z-axis doesn’t
change the time component, then we have

⇒ ε0±(p) = ε0±(k) = 0 . (8.73)
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Notice that we derive kµεµσ(k) = 0 before, now we have∑
i

k̂iεi±(k) = 0 ⇒
∑
i,j,l

R(~p)ij k̂jR(~p)ilεl±(k) =
∑
i

p̂iεi±(p) , (8.74)

where k̂i is the i-th component of the unit vector and we used the orthogonality of the rotation matrix. In
conclusion, we have the two following conditions,

A0(x) = 0 ,

∇ · ~A = 0 .
(8.75)
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Chapter 9

Lagrangian involving a massless helicity
1 particles

9.1 The photon without source

We use Aµ to construct a Lorentz invariant theory. It is equivalent to say that we need to write down a
Lagrangian invariant under the transformation Aµ → Aµ + ∂µω. We further require that there exists a
gauge choice such that Aµ satisfies the property above. A natural guess is

L = −1

4
FµνFµν , (9.1)

which is called the Maxwell Lagrangian. The gauge invariance is obvious since Fµν = ∂µAν − ∂νAµ

⇒ ∂µ(Aν + ∂νω)− ∂ν(Aµ + ∂µω) = Fµν . (9.2)

9.1.1 EOM

The Euler-Lagrange equation with respect to Aµ gives

∂µ
∂L

∂(∂µAν)
− ∂L

∂Aν
= −∂µFµν = −∂µ(∂µAν − ∂νAµ) = −2Aν + ∂ν∂µA

µ . (9.3)

9.1.2 Gauge theory

Given a solution Aµ(x) of the EoM (9.3), Aµ(x)+∂µω(x) also solves the EoM. The physical interpretation
is that Aµ(x) and Aµ(x) + ∂µω(x) are locally equivalent, but it should not be confused with a global
symmetry. We can choose ω(x) (i.e. representation of gauge invariance class conveniently). This is called
the gauge fixing.

Coulomb gauge ∇ · ~A = 0

Claim: given an Aµ, we can choose a gauge such that ∇ · ~A = 0.
Proof: Let Ã be the field after gauge transformation Ãµ = Aµ + ∂µω

∂iÃ
i =

(
∂iA

i + ∂iω
)
= 0 , ⇒ −∆ω = −∂iAi , (9.4)
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which is the Poisson equation and it can be solved for reasonable Ai.

Remark 9.1. Imposing ∇ · ~A does not fix gauge freedom completely. ∇ · ~A preserved by ω which satisfies
∆ω = 0. This is called the residue gauge degrees of freedom.

The EoM in Coulomb gauge is

0 = 2A0 − ∂0
(
∂0 + ∂iA

i
)
= ∂0∂

0A0 + ∂i∂
iA0 − ∂0∂0A

0 + ∂0∂iA
i

= ∂i∂
iA0 = −∆A0 .

0 = 2Ai − ∂i∂ν∂A
ν

= 2Ai − ∂i∂0A
0 .

(9.5)

We can use the residual gauge symmetry to simplify further. Suppose Ã0 = A0 + ∂0ω = 0, ∂0ω = −A0,

ω = −
∫
A0dt , ∆ω = −

∫
∆A0 = 0 , (9.6)

where the last equal holds because of the EoM. It is compatible with the Coulomb constraint. The EoM
becomes A0 = 0 and 2Ai = 0. These are the equations satisfied by quantum field.

Lorenz gauge

The Lorenz gauge, or the covariant gauge, is

∂µA
µ = 0 . (9.7)

Given a solution Aµ, ∂µÃ = ∂µ (A
µ + ∂µω) = 0, the condition is 2ω = −∂µAµ. In Lorenz gauge 2Aµ = 0.

9.2 Coupling photons to sources

9.2.1 The gauge covariant derivative

A naive proposal for the coupling (or the interaction) part is Aµf(φ). However, it is not Lorentz invariant.
Another guess is Aµf(φ)∂µφ, however, it is not gauge invariant. The Strategy to fix this problem is to let
φ transform as well. A natural choice is φ 7→ e−iω(x)φ:

• by reality of Lagrangian, all terms not involving Aµ or ∂µφ will be invariant under this transformation.

• ∂µφ 7→ ∂µ(e
−iωφ) = −iωe−iωφ+ e−iω∂µφ is the right form to cancel the gauge variation of Aµ

(∂µ + iAµ)φ 7→ [∂µ + i(Aµ + ∂µω)] (e
−iωφ)

= e−iω(∂µ + iAµ)φ+ e−iω
��������:
(i∂µω − i∂µω)φ

(9.8)

.

We can define the gauge covariant derivative Dµφ = (∂µ + iAµ)φ, which transforms in the same way as φ
under the gauge transformation. Coupling φ to Aµ by replacing all ∂µφ by Dµφ yields a gauge invariant
Lagrangian,

∂µφ∂
µφ− 1

2
m2φ2 → DµφD

µφ− 1

2
m2φ2 , (9.9)
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which is called the minimal coupling.

9.2.2 The notion of electromagnetic charge

If there are N different species of fields, denoted by φn, and we slightly generalize the gauge transformation,

φn(x) → eiQnω(x)φ(x) , (9.10)

where Qn is the charge of the scalar field under Aµ. The covariant derivative changes

Dµφn(x) = (∂µ − iQnAµ)φn(x) . (9.11)

We introduce electric charge into the formalism by considering

Aµ → Aµ +
1

e
∂µω

⇒ Dµφ(x) = (∂µ − ieQnAµ)φ(x) ,
(9.12)

then Qn keeps track of the interacted strength.

9.2.3 Mathematical view

Two parts:

• Dropping the spacetime dependence of ω. The gauge transformations forms a group G. The charged
fields will be in a representation of a group G.

Example 9.1. For electromagnetism, the gauge group is G = U(1) = {z ∈ C||z| = 1}. The
electromagnetic field is the one dimensional irreps which are indexed by n ∈ Z, eiφ 7→ einφ ∈ GL(1,C).

• Spacetime dependence of ω. How to take derivative of φ(x) when its spacetime variations are partially
gauge? We need to distinguish between variation in spacetime vs. in gauge group direction. And we
need to choose a suitable connection of Aµ.

9.2.4 The Lagrangian of scalar QED

The Lagrangian is
L = −1

4
FµνF

µν +Dµφ(D
µφ)∗ −m2φφ∗ , (9.13)

where the gauge covariant derivative is Dµφ = (∂µ + ieAµ)φ with charge −1. The Lagrangian is invariant
under the transformation

Aµ → Aµ +
1

e
∂µω

φ→ e−iωφ
(9.14)

9.2.5 Anti-particle

Recall that φ and φ∗ can be treated as independent degrees of freedom.

(Dµφ)
∗ = (∂µ − ieAµ)φ

∗ . (9.15)
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The opposite sign here guides us to introduce the states of opposite charges. The creation and annihilation
operators are

ap, a
†
p : [ak, a

†
p] = (2π)3δ(3)(~k − ~q)

bp, b
†
p : [bk, b

†
p] = (2π)3δ(3)(~k − ~q) ,

(9.16)

where bp, b†p are creation and annihilation operator for states of opposite charge and we called they are
anti-particles. Different particle type, their creation/annihilation operator commutes: [a·k, b

·
p] = 0. The

fields are
φ(x) =

∫
d3p

(2π)3
1√
2ωp

(
ape

−ipx + b†pe
ipx
)

φ∗(x) =

∫
d3p

(2π)3
1√
2ωp

(
a†pe

ipx + bpe
−ipx

)
ωp =

√
~p2 +m2 .

(9.17)

The particles and antiparticles have the same mass and both have positive energy. Combining quantum
mechanics and special relativity implies the existence of anti-particles.

In summary, the route of this chapter is quantizing photons (defining a massless quantum vector field
for helicity ±1 states) → gauge invariance (with gauge group U(1)) → necessity of complex reps → the
existence of anti-particles.
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Chapter 10

Scalar QED

10.1 The photon propagator (Coulomb gauge)

The photon propagator

〈0|T {Aµ(x)Aν(y)} |0〉

=
∑
σ=±1

∑
σ′=±1

∫
d3p

(2π)3
d3q

(2π)3
1√
2ωp

1√
2ωq

[
Θ(x0 − y0)ei(−px+qy) 〈0| ap,σa†q,σ |0〉 εµσ(p)ενσ′

∗(p)

+Θ(x0 − y0)ei(px−qy) 〈0| aq,σ′a†p,σ |0〉 εµσ∗ενσ′(q)
]

=
∑
σ=±1

∑
σ′=±1

∫
d3p

(2π)3
d3q

(2π)3
1√
2ωp

1√
2ωq

[
Θ(x0 − y0)ei(−px+qy) 〈0| [ap,σ, a†q,σ] |0〉 εµσ(p)ενσ′

∗(p)

+Θ(x0 − y0)ei(px−qy) 〈0| [aq,σ′ , a†p,σ] |0〉 εµσ∗ενσ′(q)
]

=
∑
σ=±1

∑
σ′=±1

∫
d3p

(2π)3
d3q

(2π)3
1√
2ωp

1√
2ωq

[
Θ(x0 − y0)ei(−px+qy)(2π)3δ(3)(~p− ~q)δσσ′εµσ(p)ε

ν
σ′

∗(p)

+Θ(x0 − y0)ei(px−qy)(2π)3δ(3)(~q − ~p)δσ′σε
µ
σ
∗ενσ′(q)

]
=
∑
σ=±1

∫
d3p

(2π)3
1

2ωp

[
εµσ(p)ε

ν
σ
∗(p)e−ip(x−y)Θ(x0 − y0) + ενσ

∗(p)ενσ(p)e
ip(x−y)Θ(x0 − y0)

]
.

(10.1)

We need to evaluate the summation
∑

σ ε
µ
σ(p)ενσ(p), using the discussion before ε±(p) = R(~p)ε±(k), we

have ∑
σ

εµσ(p)ε
ν
σ(p) =

∑
σ=±1

Rµκ(~p)ε
κ
σ(k)R

ν
λ(~p)ε

λ
σ
∗(k) , (10.2)
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where R(~p) is the rotational transformation that rotate ~k into ~p. Recall that we have the expression of
ε± = 1√

2
(0, 1,±i, 0)T , then

∑
σ

εµσ(p)ε
ν
σ(p) =

1

2

∑
σ=±1

Rµκ(~p)R
ν
λ(~p)




0

1

σi

0


(
0 1 −σi 0

)

κλ

=
1

2

∑
σ=±1

Rµκ(~p)R
ν
λ(~p)


0 0

1 −σi
σi 1

0 0


κλ

= Rµκ(~p)R
ν
λ(~p)


0 0

1 0

0 1

0 0


κλ

= Rµκ(~p)R
ν
λ(~p)

(
0

δij − kikj

|k|2

)κλ
for ~k = (0, 0, E)T

R(~p)~̂k=~p
=

(
0

δij − pipj

|p|2

)µν
= Pµν ,

(10.3)

though it seems that the calculation relies on the choice of k, we claim that it is true for all k. Now the
integral becomes

=

∫
d3p

(2π)3
1

2ωp
Pµν(p)ei~p·(~x−~y)

[
e−iωp(x0−y0)Θ(x0 − y0) + eiωp(x0−y0)Θ(y0 − x0)

]
, (10.4)

where we use the integral property: the e±i~p·(~x−~y) integration will be same. Noticing that

e−iωp(x0−y0)Θ(x0 − y0) + eiωp(x0−y0)Θ(y0 − x0) = −2ωp
2πi

lim
ε→0

∫
dωeiω(x

0−y0)

ω2 − ω2
p + iε

, (10.5)

with ω2
p = ~p2 +m2 = ~p2, ω2 − ω2

p = p2. Combine the integration, we have

〈0|T {Aµ(x)Aν(y)} |0〉 =
∫

d4p

(2π)4
iPµν(p)

p2 + iε
eip(x−y) . (10.6)

We extract the momentum space propagator

〈0|T {Aµ(x)Aν(y)} |0〉 =
∫

d4p

(2π)4
iPµν(p)

p2 + iε
eip(x−y) = i

∫
d4p

(2π)4
eip(x−y)Πµν(p) ,

iΠµν(p) =
iPµν(p)

p2 + iε
.

(10.7)
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(Derived via path integral), Πµν in covariant gauges are

Πµν = −
gµν − (1− ξ)p

µpν

p2

p2 + iε
, (10.8)

where ξ corresponds to a choice of covariant gauge. Because this is a gauge choice, it must be dropped out
of the final result. We then have two options in the later calculation,

• keep ξ-dependence in the calculation.

• fix ξ value.

1. ξ = 1, Feynman gauge
iΠµν = − igµν

p2 + iε
(10.9)

.

2. ξ = 0, ’t Hooft gauge

iΠµν = −i
gµν − pµpν

p2

p2 + iε
. (10.10)

10.2 LSZ for scalar QED

10.2.1 complex scalar field

Recall that the proof of LSZ is based on

i

∫
d4xeipx(2+m2)φ(x) =

√
2ωp (ap(∞)− ap(−∞)) ,

−i
∫
d4xe−ipx(2+m2)φ(x) =

√
2ωp

(
b†p(∞)− b†p(−∞)

)
,

(10.11)

analogous relation for φ∗(x),

−i
∫
d4xe−ipx(2+m2)φ∗(x) =

√
2ωp

(
a†p(∞)− a†p(−∞)

)
,

i

∫
d4xeipx(2+m2)φ∗(x) =

√
2ωp (bp(∞)− bp(−∞)) ,

(10.12)

from these expression, we justify

• φ(x) insertions yield incoming e+ (anti-particle, modes created by b†p) and outgoing e− (particle,
modes created by a†p).

• φ∗(x) insertions yield incoming e−, outgoing e+.
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10.2.2 Massless vector field (gauge boson, vector boson, photons)

The LSZ for Aµ is

i

∫
d4xeipx2Aµ(x) =

√
2ωp

∑
σ=±1

[εµσ(p)(ap,σ(∞)− ap,σ(−∞))]

−i
∫
d4xe−ipx2Aµ(x) =

√
2ωp

∑
σ=±1

εµσ
∗(p)

(
a†p,σ(∞)− a†p,σ(−∞)

)
.

(10.13)

We want to project onto a particular helicity of the external state a†p,σ |0〉. Recall that ε± = 1√
2
(0, 1,±i, 0)T ,

we have
εµ±(k)ε

∗
µ±(k) = −1 ,

εµ±(k)ε
∗
µ∓(k) = 0 ,

εµσ(k)εµσ′
∗(k) = −δσσ′ ,

ε±(p) = R(p)ε±(k) ⇒ εµσ(p)εµσ′
∗(p) = −δσσ′ , .

(10.14)

Project onto particular helicity,

i

∫
d4xeipx2(−εµ,σ∗(p))Aµ(x) =

√
2ωp [ap,σ(∞)− ap,σ(−∞)]

−i
∫
d4xe−ipx2(−εµ,σ(p))Aµ(x) =

√
2ωp

[
a†p,σ(∞)− a†p,σ(−∞)

]
.

(10.15)

This tells us

• −εµ,σ(p)Aµ(x) insertion yields incoming particle of momentum p and helicity σ.

• −εµ,σ∗(p)Aµ(x) insertion yields outgoing particle of momentum p and helicity σ.

In Feynman rules, incoming particle comes with a factor of −εµ,σ(p), outgoing with a factor of −ε∗µ,σ(p)
with a contraction over µ (with the µ index of Pµν occurring in the photon propagator).

Remark 10.1. Signs will cancel in | 〈f |S |i〉 |2, so we can choose +εµσ,+ε
µ
σ
∗ instead.

10.3 Ward identity

From our analysis of quantum fields, εµ(p) ∼ εµ(p) + cp̂µ. Writing an amplitude involving an external
photon as

M = εµ(p)M
µ !
= (εµ(p) + cp̂µ)Mµ ⇒ pµM

µ !
= 0 , (10.16)

which is the Ward identity. We will consider this identity in the learning of path integral. From now, we
will see that this holds in special examples.
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10.4 Feynman rules for scalar QED

10.4.1 Incoming, outgoing particles

• Incoming photons:

p

µ = εµσ(p) . (10.17)

• Outgoing photon

p

µ = εµσ(p)
∗ .

(10.18)

• Incoming e−

p

,
(10.19)

• Outgoing e−

p

,
(10.20)

• Incoming e+

p

,
(10.21)

• Outgoing e+

p

,
(10.22)

where all the dots represents the external points.

10.4.2 Propagators

Suppose ψ1 and ψ2 are two fields and there propagator is

〈0|T {ψ1(x)ψ2(y)} |0〉 = i

∫
d4p

(2π)4
eip(x−y)Π(p) , (10.23)

• Photon
iΠµν =

−i
p2 + iε

[
gµν − (1− ξ)

pµpν

p2

]
=

p

µ ν , (10.24)

• Scalar field
iΠS =

i

p2 −m2 + iε
=

p

φ∗(x) φ(y) . (10.25)

• The propagator 〈0|T {φ(x)φ(y)} |0〉 = 〈0|T {φ∗(x)φ∗(y)} |0〉 ≡ 0 as [ap, b
†
p] = [a†p, bp] = 0.

Hence,
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• incoming e− is φ∗ insertion .

• incoming e+ is φ insertion .

• outgoing e− is φ insertion .

• outgoing e+ is φ∗ insertion .

Remark 10.2. Diagrams come with particle or charge flow arrow.

10.4.3 Vertices

Expand out covariant derivative, Dµ = ∂µ + ieAµ, the Lagrangian is

L = −1

4
FµνF

µν +Dµφ(D
µφ)∗ −mφφ∗

= −1

4
FµνF

µν − φ∗(2+m2)φ− ieAµ (φ
∗∂µφ− (∂µφ∗)φ) + e2AµA

µφφ∗ .

(10.26)

Comes from the Lagrangian, the vertex should have the value,

p

q

= −ie(±ipµ ± iqµ)i , (10.27)

where the last i comes from the expansion of ei
∫

Lintdt and we will determine the signs later

Remark 10.3. The physical quantity is |M |2, so what does matter is the relative signs.

. Because AµAµ = gµνA
µAν , we have

q = e2i2gµν , (10.28)

where the i comes from the expansion of the ei
∫

Lintd4x again.

Remark 10.4. We cannot normalize with a factor of 1/2, because we cannot change the term (we have
gauge invariance requirement).

Now we need to derive the signs. Such a vertex term comes from the term Aµ (φ
∗∂µφ− φ∂µφ∗). Recall

that for incoming particle carrying a momentum k, the Feynman diagram is

k

,

(10.29)
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for the outgoing particle carrying a momentum k,

k

.

(10.30)

So for the term φ∗∂µφ, there are two possible diagram

k ∼ ∂µe−ikx = −ikµ , k ∼ ∂µeikx = ikµ . (10.31)

For the term −φ∂µφ∗, also two possible diagram,

k

∼ −∂µe−ikx = ikµ ,

k

∼ −∂µeikx = −ikµ . (10.32)

We conclude that the sign will be −ikµ if momentum and particle flow arrow are aligned, +ikµ if they are
anti-aligned.

Example 10.1.
p

q

= −ie(−pµ − qµ) ,

p

q

= ie(−pµ + qµ) . (10.33)

10.5 Møller scattering

The Møller scattering process is
e−e− → e−e− . (10.34)

The tree-level Feynman diagram is

p1 p3

p4p2

e− e−

e−e−

+

e−

e− e−

e−

p1
p4

p2

p1

= iME + iMu , (10.35)
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iMe = ie(−p1 − p3)
µ

(
−i
gµν − (1− ξ)

kµkν
k2

k2

)
ie(−p2 − p4)

ν

= ie2(p1 + p3)
µ(p2 + p4)µ

1

(p3 − p1)2
,

(10.36)

because (p1 + p3) · k = (p1 + p3) · (p3 − p1) = p23 − p21 = 0, the result is indeed ξ-independent.

iMu = ie2
(p1 + p4)

µ(p2 + p3)µ
(p4 − p1)2

, (10.37)

the cross section is(
dσ

dΩ

)
CM

=
1

64π2E2
CM

|M |2 = e4

64π2E2
CM

[
(p1 + p3)(p2 + p4)

(p3 − p1)2
+

(p1 + p4)(p2 + p3)

(p4 − p1)

]2
=
α2

4s

[
s− u

t
+
s− t

u

]2
, α =

e2

4π
∼ 1

137
,

(10.38)

where the subscript CM means the center of mass frame.
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Chapter 11

Finite dimensional representation of the
Lorentz group

11.1 Lie group and Lie algebras

Lie groups are differentiable manifold that carries a group structure. Much of the structure is reviewed by
studying them independently in a neighbourhood of the identity, which is called the Lie algebra, a vector
space with multiplication.

Example 11.1. For matrix groups, containing matrices of some dimension, no longer necessary invertible.
There exists a map:

exp : G → G

A 7→ eiA .
(11.1)

The group multiplication is encoded in commutator of Lie algebra,

[·, ·] : G × G → G . (11.2)

For matrix group, it is natural to have [A,B] = AB − BA. Finite dimensional Lie group have finite
dimensional Lie algebra.

11.2 Representations of Lie group and Lie algebra

Definition 11.1. The representation of Lie group on vector space of dimension n is a map:

ρG : G→ Aut(V ) ∼= GL(n) , (11.3)

where GL(n) requires choices of the basis of V .

Definition 11.2. Representation of Lie algebra on same V ,

ρG ;G → End(V ) ∼=M(n) , (11.4)

where M(n) is the matrix collection and it doesn’t require the matrix is invertible.
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ρG, ρG both respect the group/algebra structure,

ρG(g1g2) = ρG(g1) ◦ ρ(g2) , for ∀g1, g2 ∈ G ,

ρG (αA+ βB) = αρG (A) + βρG (B) , ∀α, β ∈ R/C , A,B ∈ G ,

ρG [A,B] = [ρG (A), ρG (B)] .

(11.5)

Theorem 11.1. Finite dimensional representations of connected and simply connected Lie group are in
one by one relation to finite dimensional representations of their Lie algebras.

Definition 11.3. Connectness: A topological space is connected if it cannot be written as the adjoint union
of two non-empty open sets.

Lemma 11.1. The continuous image of a connected space is connected.

In fact, equivalent definition of connectness is: X is connected if all continuous functions from X to
the space {1,−1} with the discrete topology are constant.

Definition 11.4. Simple-connectness: X is simply connected if all continuous maps S1 → X can be
continuously contracted to a point.

11.3 Connected components of the Lorentz group O(1, 3)

There exists two group homomorphism φi : O(1, 3) → {±1} i = 1, 2.

φ1 = φdet : A 7→ det(A)

φ2 = φsgn : A 7→ sgn(A0
0) .

(11.6)

component in φdet in φsgn

SO↑(1, 3) 1 1
PSO↑(1, 3) -1 1
TSO↑(1, 3) -1 -1

TPSO↑(1, 3) 1 -1

SO↑(1, 3) is connected (in fact, it is path connected). O(1, 3) has 4 connected component.

11.4 The simply connected cover SL(2,C) of SO↑(1, 3)

SO↑(1, 3) is not simply connected. since the subgroup SO(3) is not simply connected. Its double cover
SL(2,C) (2 × 2 matrices with unit determinant) is simply connected. We construct the group homomor-
phism: K : SL(2,C)

2:1→ SO↑(1, 3). Let H = {A ∈M(2,C)|A† = A} = 〈σ0, ~σ〉. Consider

φ : R4 → H

x 7→ xµσµ
(11.7)

where the determinant

det(xµσµ) =

∣∣∣∣∣ x0 + x3 x1 − ix3

x1 + ix2 x0 − x3

∣∣∣∣∣ = xµxµ . (11.8)
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Let SL(2,C) act on H by conjugation,

G ∈ SL(2,C) : H → H

A 7→ GAG† ,
(11.9)

Definition 11.5. We could then define the group homomorphism K : SL(2,C) → SO↑(1, 3), K(G) : R4 →
R4 such that

Gφ(x)G† = (K(G)x)µσµ . (11.10)

We claim that K(G) ∈ O↑(1, 3), K(G) is linear follows from the linearity of φ. K(G) preserves
Minkowski norm, since

[K(G)x]µ[K(G)x]µ = det ([K(G)x]µσµ) = det
(
GφG†

)
= det(G) det(φ) det

(
G†
)
= detφ = xµx

µ .

(11.11)
As continuous image of connected space is connected, we conclude that K(G) ∈ SO↑(1, 3). We indeed
construct a group homomorphism from SL(2,C) to SO↑(1, 3).

Remark 11.1. The kernel of the map K is

KerK =

{(
1 0

0 1

)
,

(
−1 0

0 −1

)}
, (11.12)

thus the map K is two to one.

11.5 The Lie algebra SO(1, 3)

Example 11.2. The transformation of SO(1, 3) takes the following form, for example, the rotation around
x-axis and the boost along the x axis is

1

1

cos θx sin θx

− sin θx cos θx

 infinitesimal7→


1

1

1 θx

−θx 1



coshβx sinhβx

sinβx coshβx

1

1

 infinitesimal7→


1 βx

βx 1

1

1

 .

(11.13)

All matrices on the right have the form

1 + iθiJi , 1 + iβiKi . (11.14)
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The SO(1, 3) is generated by {J1, J2, J3.K1,K2,K3} with the following commutation relation

[Ji, Jj ] = iεijkJk ,

[Ji,Kj ] = iεijkKk ,

[Ki,Kj ] = −iεijkJk .

(11.15)

Or more compactly, define

V µν =


0 K1 K2 K3

−K1 0 J3 −J2
−K2 −J3 0 J1

−K3 J2 −J1 0

 , (11.16)

with the commutator

[V µν , V ρσ] = i (gνρV µσ + gµσV νρ − gµρV νσ − gνσV µρ) .E (11.17)

We introduce the generator
J+
i =

1

2
(Ji + iKi) , J−

i =
1

2
(Ji − iKi) , (11.18)

with the commutator
[J+
i , J

+
j ] = iεijkJ

+
k ,

[J−
i , J

−
j ] = iεijkJ

−
k ,

[J+
i , J

−
j ] = 0 ,

(11.19)

based on these generators, we conclude that SO(1, 3) ∼= SU(2)⊕ SU(2). The irreps of SO(1, 3) (and thus
SL(2,C)) are labelled via the tensor product of two irreps of SU(2), which means that they are labelled
by two positive half-integers (A,B), while the irreps have dimension (2A+1)(2B+1). The representation
(A,B) of SU(2) ⊕ SU(2) (or of SL(2,C)) acts on the tensor product of the SU(2) representation spaces
VA, VB as

ρso(1,3)(A,B)(α+ + α−)(V ⊗W ) =
(
ρ
su(2)
A (α+)V ⊗W + V ⊗ ρ

su(2)
B (α−)W

)
,

∀V ⊗W ∈ VA ⊗ VB .
(11.20)

To help identify (A,B) with irreps are already known, it helps to strict to rotations. Since

so(3) ∼= su(2) ↪→ su(2)⊕ su(2)

θiJi 7→ θi(J
+
i + J−

i ) ,
(11.21)

ρ(A,B) restricts to the tensor product representation ρA ⊗ ρB of SU(2).

irreps of so(1, 3) (0, 0) (12 , 0) (0, 12) (12 ,
1
2)

irreps of su(2) 0⊗ 0 = 0 1
2 ⊗ 0 = 1

2 0⊗ 1
2 = 1

2
1
2 ⊗ 1

2 = 0⊕ 1

irreps of so(1, 3) (1, 0) (0, 1) (1, 1)

irreps of su(2) 1⊗ 0 = 1 0⊗ 1 = 1 1⊗ 1 = 0⊕ 1⊕ 2

• 0⊗ 0 = 0 is the trivial representation (scalar).
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• 1
2 ⊗ 0 and 0⊗ 1

2 are two spinors reps.

• (12 ⊗ 1
2) are 4-vector reps.

• 1⊗ 0 and 0× 1 are self dual reps.

• 1⊗ 1 is traceless symmetric reps.
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Chapter 12

Spinors

12.1 Spinor representations (12 , 0) and (0, 12)

Recall the two dimension spin 1
2 irreps of SU(2). We can choose Pauli matrices as generators of SU(2),

with commutator and anti-commutator

[σi, σj ] = 2iεijkσk , {σi, σj} = 2δij . (12.1)

The 2 dimensional (0, 12) and (12 , 0) irreps of so(1, 3) are spanned by

(
1

2
, 0) ρ( 1

2
,0)(J

−
i ) =

σi
2

ρ( 1
2
,0)(J

+
i ) = 0

(0,
1

2
) ρ(0, 1

2
)(J

−
i ) = 0 ρ(0, 1

2
)(J

+
i ) =

σi
2
.

(12.2)

The generators of rotation and boosts can be represented as

(
1

2
, 0) ρ( 1

2
,0)(Ji) = ρ( 1

2
,0)(J

+
i + J−

i ) =
σi
2

ρ( 1
2
,0)(Ki) = ρ( 1

2
,0)(i(J

+
i − J−

i )) =
i

2
σi

(0,
1

2
) ρ(0, 1

2
)(Ji) =

σi
2

ρ(0, 1
2
)(Ki) = − i

2
σi .

(12.3)

Remark 12.1. Such a representation is not a unitary representation since it is finite dimensional. There
two representations are related by conjugation. We call these two are conjugated representation with respect
to the other one.

Theorem 12.1. Let G and H be topological groups, and assume that G is simply connected. Let U be a
neighbourhood of the identity of G. Then for any local homomorphism U → H, it can be extended to a
homomorphism G→ H. For us, H = Aut(V ), exp |u : u

∼→ U .

Definition 12.1. A spinor is an element of the (12 , 0) or (0, 12) representation space V( 1
2
,0) or V(0, 1

2
), we

define

• ψR ∈ V(0, 1
2
) is the right-handed Weyl spinor.
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• ψL ∈ V( 1
2
,0) is the left-handed Weyl spinor.

Our convention (A,B) corresponds to the generator J−
i and J+

i separately.

Under a Lorentz transformation, writing JRi = ρR(Ji) and KR
i = ρR(Ki),

ψR → exp

(
iθiJ

(0, 1
2
)

i + iβiK
(0, 1

2
)

i

)
ψR = e

1
2
(iθiσi+βiσi)ψR

ψL → exp

(
1

2
(iθi − βi)σi

)
ψL .

(12.4)

12.2 Lorentz invariance and spinors

To construct Lorentz invariant Lagrangian out of spinor fields, we need to combine spinors to obtain scalars.

12.2.1 ψ vs. ψ†

Spinors are complex, we need both ψL, ψR and ψ†
L, ψ

†
R to construct Hermitian Lagrangian. Notice that

ψ†
R,L → ψ†

R,Le
− 1

2
(iθi∓βi)σi ⇒ ψR, ψ

†
L ∈ V(0, 1

2
) ψL, ψ

†
R ∈ V( 1

2
,0) . (12.5)

The overall sign has mathematical explanation. We have defined representation via a left group action
G × V → V with h · (g · v) = (h · g) · v. We can also use the right group action, which is equivalent:
V ×G→ V , (v · g) ·h = v · (g ·h). They are one to one correspondent. The left group action representation
ρ satisfies ρ(h)◦ρ(g) = ρ(h◦g), while the right group action presentation ρ̃ defined by ρ̃ := ρ(·−1) satisfying
ρ̃ρ̃(g) = ρ̃(hg), i.e. ψ†

L, ψ
†
R transform in the (0, 12), (

1
2 , 0) irrep, implemented as a right action.

12.2.2 Tensor product representation

Products of spinors transform in tensor product representations

(
1

2
, 0)× (

1

2
, 0) = (

1

2
⊗ 1

2
, 0× 0) = (0⊕ 1, 0) = (0, 0)⊕ (1, 0) , (12.6)

we can project (ψ†
L, ψR), (ψ

†
R, ψL) onto trivial representation. If choose two different handed spinor, for

example,
(
1

2
, 0)⊗ (0,

1

2
) = (

1

2
⊗ 0, 0⊗ 1

2
) = (

1

2
,
1

2
) , (12.7)

this tell us that we can construct trivial representation by contracting with a four-vector from (ψ†
R, ψR),

(ψ†
L, ψL).

12.2.3 The scalar representation from spinors

We consider transformation of ψ†
LψR =

∑2
i=1(ψ

†
L)i(ψR)i where

ψR =

(
(ψR)1

(ψR)2

)
= (ψR)iei , ψL = (ψL)iei . (12.8)

81



Remark 12.2. {ei ⊗ ej} is a basis of V(0, 1
2
) ⊗ V(0, 1

2
), and the coefficient is related to ψ†

LψR.

The Lorentz transformation (in the variation form) is

δ(ψ†
LψR) = δ(ψ†

L)ψR + ψ†
Lδ(ψR)

= −1

2
(iθi + βi)ψ

†
LσiψR + ψ†

L

1

2
(iθi + βi)σiψR = 0 ,

(12.9)

which proves that ψ†
LψR + ψ†

RψL is both Lorentz invariant and Hermitian,

12.2.4 The vector reps. from spinors

The four vectors of Lie algebra transforms as

δ(v0, vi) =
(
βiv

i, βiv
0 − εijkθjvk

)
. (12.10)

We want to construct the corresponding basis of V( 1
2
,0) ⊗ V(0, 1

2
). Consider ψ†

RψR

δ
(
ψ†
RψR

)
= δ(ψ†

R)ψR + ψ†
RδψR

= −1

2
(iθi − βi)ψ

†
RσiψR +

1

2
(iθi + βi)ψ

†
RσiψR

= βiψ
†
RσiψR .

(12.11)

ψ†
Rψ

R transform as the time component of a four vector. If we identify ψ†
RσiψR with the spatial component,

δ(ψ†
RσiψR) = −1

2
(iθj − βj)ψ

†
RσjσiψR +

1

2
(iθj + βj)ψ

†
RσiσjψR

=
1

2
iθjψ

†
R[σi, σj ]ψR +

1

2
βjψ

†
R{σi, σj}ψR

= −εijkθjψ†
RσkψR + βiψ

†
RψR ,

(12.12)

which transforms as we expected. So (ψ†
RψR, ψ

†
RσiψR) transforms as a four vector. If we introduce σµ =

(1, σi), the four vector can be written as ψRσµψR. Likewise (ψ†
LψL,−ψ

†
LσiψL) transform as (v0, vi), by

introducing σ̄µ = (1,−σi), the four vector is ψ†
Lσ̄

µψL.

12.3 Lorentz invariant Lagrangian involving spinors

12.3.1 The Dirac Lagrangian

We have the following proposals

• ∂µψ
†
L∂

µψR+∂µψ
†
R∂

µψL, which is Lorentz invariant and Hermitian. Such a Lagrangian can be mapped
to Lagrangian of multiple coupled scalar fields.

• iψ†
Rσ

µ∂µψR, iψ†
Lσ̄

µ∂µψL, which is Lorentz invariant. And

(iψ†
Rσ

µ∂µψR)
† = −i∂µψ†

R(σ
µ)†ψR = −i∂µψ†

Rσ
µψR = −i∂µ(ψ†

Rσ
µψR) + iψ†

Rσ
µ∂µψR , (12.13)
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up to a total derivative it is also Hermitian. The mass term should be proportional to ψ†
LψR+ψ†

RψL.
By dimension analysis, the action should be dimensionless [S] = m0. By

∫
d4xL , [L ] = m4. From

kinetic term we know [ψ] = m3/2, so [ψ†
LψR + ψ†

RψL] = m3, the term should be

m
(
ψ†
LψR + ψ†

RψL

)
. (12.14)

Remark 12.3. The mass term couples to ψL and ψR.

For the theory with massive spinors, it is convenient to work with reducible Dirac representation, the Dirac
spinor ψ defined as

ψ =

(
ψL

ψR

)
, ψ̄ = (ψ†

R, ψ
†
L) , (12.15)

where the ψ̄ is called the Dirac conjugate. And we define the 4× 4matrices

γµ =

(
0 σµ

σ̄µ 0

)
, (12.16)

using these notations, the Lagrangian can be written as a compact form,

L = ψ̄(iγµ∂µ −m)ψ . (12.17)

Before we study the quantum theory, we first quickly learn the Clifford algebra for preparations.

12.3.2 The Clifford algebra

The γµ introduced above satisfy {γµ, γµ} = 2gµν1. Any realization of this algebra in therms of 4 × 4

matrices can be used to construct the Dirac representation. Define Sµν = i
4 [γ

µ, γν ]. Purely involving the
anticommutator, we can verify that

[Sµν , Sρσ] = i (gνρSµσ + gµσSνρ − gνσSµρ − gµρSνσ) , (12.18)

which is the exactly the commutation relation between the generators of so(1, 3). Sµν furnishes a repre-
sentation of so(1, 3). If we choose

γµ =

[
0 σµ

σ̄µ 0

]
, (12.19)

which is called the Weyl representation. The Sµν can be written explicitly as

Sij =
1

2
εijk

(
σk 0

0 σk

)
, S0i = − i

2

(
σi 0

0 −σi

)
. (12.20)

Compare to
ρ(0, 1

2
)(Ki) = − i

2
σi

ρ( 1
2
,0)(Ki) =

i

2
σi .

(12.21)
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This reps decompose into V(0, 1
2
) ⊕ V( 1

2
,0). (Sµν)† to obtain V( 1

2
,0) ⊕ V(0, 1

2
). A second realization of the

Clifford algebra,

γ0 =

(
0 σ2

σ2 0

)
, γ1 =

(
iσ3 0

0 iσ3

)
, γ2 =

(
0 −σ2
σ2 0

)
, γ3 =

(
−iσ1 0

0 −iσ1

)
, (12.22)

which is called the Majorana representation.

Remark 12.4. At the level of representations, the Weyl and Majorana representation are equivalent.

12.3.3 Lorentz transformation properties of spinor bilinearities revisited

We have ΛS = eiθµνS
µν , which is the reducible (0, 12) ⊗ (12 , 0) representation. In another side, we have

Λν = eiθµνV
µν , the irreducible 4-vector representation. How to construct Lorentz scalar from product of

Dirac spinors? First, we claim that (γ0ΛSγ0)† = Λ−1
S and (γ0)2 = 1. Give the claim, for a Dirac spinor ψ,

ψ†γ0 → (ΛSψ)
†γ0 = ψ†γ0γ0Λ†

Sγ
0 = ψ†γ0

(
γ0ΛSγ

0
)†

= ψ†γ0Λ−1
S , (12.23)

where we use (γ0)† = γ0, so ψ†γ0ψ transform as a scalar.

Lemma 12.1.
(γµ)† = γ0γµγ0 . (12.24)

Proof: From the anticommutator {γµ, γν} = 2gµν1, we know that

(γ0)2 = 1 , (γi)0 = −1 , (12.25)

which means that the eigenvalue of γ0 is ±1 and the eigenvalue of γi is ±i. If the Clifford algebra is realized
in terms of normal and unitary diagonalizable matrices, hence

(γ0)† = γ0 , (γi)† = −γi , (12.26)

i.e.
(γ0)† = γ0γ0γ0 ,

(γi)† = γ0γiγ0 .
(12.27)

Lemma 12.2.
(Sµν)† = γ0Sµνγ0 , (12.28)

Proof:

(Sµν)† =

(
i

4
[γµ, γν ]

)†
= − i

4
[γ0γνγ0, γ0γµγ0] = − i

4
γ0[γν , γν ]γ0 = γ0Sµνγ0 . (12.29)

We then prove the claim (γ0ΛSγ
0)† = Λ−1

S now,
Proof:

(γ0ΛSγ
0)† =

(
γ0eiθµνS

µν
γ0
)†

= γ0e−iθµν(S
µν)†γ0 = e−iθµνS

µν
= Λ−1

S . (12.30)

The next question is how to construct Lorentz 4-vectors from Dirac spinor bilinears. Using the property

Λ−1
S γµΛS = (ΛV )

µ
νγ

ν , (12.31)
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It is easy to guess ψ†γ0γµψ transforms as

ψ†γ0γµψ → ψ†γ0Λ−1
S γµΛSψ = (ΛV )

µ
νψ

†γ0γνψ , (12.32)

which is indeed a Lorentz 4-vector.

Remark 12.5. with ψ = (ψL, ψR)
T this reproduces the results obtained above via the Weyl representation.

12.4 The Dirac equation

12.4.1 The free equation

The Lagrangian is
L = ψ†γ0(iγµ∂µ −m)ψ = ψ̄(i/∂ −m)ψ , (12.33)

where /A := γµAµ. The EoM (ψ and ψ† are independent)

for ψ : ∂µ
∂L

∂µψ
− ∂L

∂ψ
= 0 ⇒ ∂µ(ψ̄iγ

µ) +mψ̄ = 0 ,

⇔ i∂µ(ψ
†γ0γµ)γ0 +mψ†γ0γ0 = 0 ⇔ (−i/∂ψ +mψ)† = 0 .

(12.34)

For ψ†, we rewrite the Lagrangian as L = −i∂µψ̄γµψ + i∂µ
(
ψ̄γµψ

)
−mψ̄ψ, then

∂µ
∂L

∂µψ† − ∂L

∂ψ† = 0 ⇔ −i/∂ψ +mψ = 0 . (12.35)

We then get the Dirac equation
(i/∂ −m)ψ = 0 . (12.36)

Remark 12.6. Each component of ψ satisfies ordinary Klein-Gordan equation, to see that, acting (i/∂+m)

on both sides of the Dirac equation,

(i/∂ +m)(i/∂ −m)ψ = 0 ⇔ (−∂µ∂νγµγν −m2)ψ = 0

⇔ (2+m2)ψ = 0 ,
(12.37)

which is the dispersion relation p2 = m2 upon Fourier transformation.

12.4.2 Coupling Dirac spinors to the photon: the QED Lagrangian

We have ψ transform in representation (parameterized by Z) of U(1) (gauge) group,

ψ 7→ e−iωψ , (12.38)

which is a global symmetry of free Dirac Lagrangian. Evaluate to a local symmetry,

∂µ → Dµ = ∂µ + ieAµ , (12.39)
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such that
Dµψ = e−iωDµψ . (12.40)

We then have QED Lagrangian,

L = −1

4
FµνFµν + iψ̄ /Dψ −mψ̄ψ . (12.41)

The Equation of motion is, for ψ,

(i /D −m)ψ = 0 ⇔ (i/∂ − e /A−m)ψ = 0 , (12.42)

which is the Dirac equation of spinor minimally coupled to a photon. EoM for Aµ,

∂µF
µν = eψ̄γνψ , (12.43)

which is the Maxwell equation with source Jµ = eψ̄γµψ.

12.5 Quantum Dirac spinor fields

12.5.1 Review of setup

ψ(x) is a quantum Dirac spinor field, which transforms under the Lorentz transformation as

U(Λ)ψ(x)U−1(Λ) = DDirac(Λ
−1)ψ(Λx) = Λ−1

S ψ(Λx) , (12.44)

where
ψ(x) =

∫
d3p

(2π)3
1√
2ωp

∑
σ

(
uσ(p)aσ(p)e

−ipx + vσ(p)b
†
σe
ipx
)
, (12.45)

where uσ(p), vσ(p) are polarization tensor, ap is the annihilation operator for particle and b†p is the creation
operator for anti-particle. In order to make it well defined, we need to clarify two things

• identify infinite dimension unitary representation of Lorentz group.

• find the uσ(p), vσ(p).

12.5.2 What type of particles can Dirac field package

Recall that the little group for massive particle is SO(3), which is the subgroup of SO↑(1, 3), where we
keep the fiducial momentum k = (m, 0, 0, 0) fixed. Now

SL(2,C) SO↑(1, 3)

SU(2) SO(3)

2:1

⊃ ⊃

2:1

, (12.46)
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and kµσ
µ = mσ0 is fixed. Decompose (12 , 0) ⊕ (0, 12)|SU(2) (irreps of SU(2)) and recall that SU(2) (of

rotations) can embedded diagonally into SU(2)⊕ SU(2),

(
1

2
, 0)⊕ (0,

1

2
)|SU(2) =

1

2
⊗ 0⊕ 0⊗ 1

2
=

1

2
⊕ 1

2
. (12.47)

The only possible choice of irreps for the little group is the spin 1
2 irrep.

12.5.3 The intertwiner solve the Dirac equation

Based on the discussion above, u(p) (v(p)) takes the following form

u(p) =


u11/2 u1−1/2

u21/2 u2−1/2

u31/2 u3−1/2

u41/2 u4−1/2

 , (12.48)

where the row index is the spin index and the column index is the Dirac index of (12 , 0) ⊕ (0, 12) reps of
SL(2,C). Likewise, v(p) has the similar form. u and v must satisfy (recall the equation (8.32) )

D(Λ)u(p) = ΛSu(p) = u(Λp)D 1
2
(W (Λ, p)) ,

D(Λ)v(p) = ΛSv(p) = v(Λp)D∗
1
2

(W (Λ, p)) .
(12.49)

Proof: These two equations need some more details. The initial equation for polarization tensor is∑
σ

D∗
σ′σ(W (Λ, p))εµσ(p) =

∑
ν

D(Λ−1)µνε
ν
σ′(Λp) . (12.50)

By definition of Hermitian conjugation, we have∑
σ

D†
σσ′(W (Λ, p))εµσ(p) =

∑
ν

D(Λ−1)µνε
ν
σ′(Λp) . (12.51)

Changing Λ → Λ−1, p→ Λp, we have∑
σ

D†
σσ′(W (Λ−1,Λp))εµσ(Λp) =

∑
ν

D(Λ)µνε
ν
σ′(p) . (12.52)

Taking the advantage of the unitarity of D, and write the equation in matrix form, we have

D(Λ)ε(p) = ε(Λp)DJ(W (Λ−1,Λp)−1) , (12.53)

where J denotes the spin-J representation. Based on the definition of the operator W ,

W (Λ−1,Λp)−1 = U(L−1(p)Λ−1L(Λp))−1 = U(L−1(Λp)ΛL(p)) =W (Λ, p) , (12.54)
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substitute back to the matrix equation, we have

D(Λ)ε(p) = ε(Λp)DJ(W (Λ, p)) , (12.55)

back to our discussion, we have

ΛSu(p) = u(Λp)D 1
2
(W (Λ, p)) , ΛSv(p) = v(Λp)D∗

1
2

(W (Λ, p)) . (12.56)

It is convenient to denote

u =

(
u+

u−

)
, v =

(
v+

v−

)
, (12.57)

where u±, v± are all 2 × 2 matrices. Consider first p = k, then Λ is a spatial rotation ρ, such that
W (ρ, k) = ρ. Recall that with

ωij =

 0 θz −θy
−θz 0 θx

θy −θx 0

 , D 1
2
(ρ) = e

i
2
εijkωijσk = ei(θxσ1+θyσ2+θzσ3) . (12.58)

ρS = eiωijS
ij
, Sij =

i

4
[γi, γj ] =

1

2
εijk

(
σk 0

0 σk

)
, (12.59)

the equation reduces to
σku

±(k) = u±(k)σk , (12.60)

which means that u±(k) commutes with all the generator of SU(2). By Schur’s lemma,

u±(k) = c±

(
1 0

0 1

)
. (12.61)

For v(σ), the equation is

σiv
±(k) = −v±(k)σ∗i ⇔ σiv

±(k)σ2 = v±(k)σ2σi , (12.62)

where we use σ∗i = −σ2σiσ2 and σ22 = 1. Then [v±(k)σ2, σi] = 0, by Schur’s lemma,

v±(k)σ2 = d±

(
1 0

0 1

)
⇒ v±(k) = d±

(
0 −i
i 0

)
. (12.63)

u±(k) and v±(k) solve intertwines equation for any choice of c±, d±. Parity and locality (as we will see)
impose c+ = c−, d+ = −d−. A choice of normalization is c± =

√
m, d± = ∓i

√
m,

u(k) =
√
m


1 0

0 1

1 0

0 1

 , v(k) =
√
m


0 −1

1 0

0 1

−1 0

 . (12.64)
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For arbitrary momentum p, we know that

u(p) = L(p)Su(k) , v(p) = L(p)Sv(k) , (12.65)

where L(p) is the fiducial Lorentz transformation L(p)k = p. With

L(p)µν


m

0

0

0


ν

=


p0

p1

p2

p3


µ

, L(p) =


p0

m
p1

m
p2

m
p3

m
p1

m
p2

m
p3

m

 . (12.66)

Recall that Λ−1
S γµΛS = Λµνγν , Λ−1

S γ0 = Λ0
νγ

νΛ−1
S . In Weyl realization of γ matrices

γ0 =

(
0 1

1 0

)
⇒ γ0u(k) = u(k) , γ0v(k) = −v(k) , (12.67)

⇒ u(p) = L(p)Su(k) = L(p)Sγ
0u(k) = (L(p)−1)0νγ

νL(p)Su(k) , (12.68)

(Λ−1)µν = Λρσgρνg
σµ ⇒ (L(p)−1)0ν = (L(p))ρσgρνg

σ0 = (L(p))ρ0gρν =
pρ

m
gρν =

pν
m
. (12.69)

This gives
u(p) =

pνγ
ν

m
u(p) ⇒ (/p−m)u(p) = 0 . (12.70)

Likewise
v(p) = − /p

m
v(p) ⇒ (/p+m)v(p) = 0 . (12.71)

In this case, the quantum Dirac spinor field satisfies (i/∂ −m)ψ(x) = 0.

Remark 12.7. Pay attention the difference between the previous discussion. In the former section we
derive the EoM for ψ(x), which is the same. However, it is from Lagrangian and isn’t quantized. Now the
quantized field still satisfies the EoM of the same form, but have different meaning.

12.6 Chirality and the γ5 matrix

Chirality distinguishes between two Weyl irreps, (12 , 0) left-handed and (0, 12) right-handed. Recall that a
Dirac spinor has no fixed chirality, we can project it onto the chiral subspace via γ5 matrix.

Definition 12.2.
γ5 = iγ0γ1γ2γ3 . (12.72)

Theorem 12.2.
{

1±γ5
2

}
is a complete set of projection operator.

Proof: The proof separates into two steps. First, we prove that 1±γ5
2 is a projector, since

(
1± γ5

2

)2

=
1± 2γ5 + (γ5)2

4
=

1± γ5

2
, (12.73)
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where we used (γ5)2 = 1. And

1± γ5

2

1∓ γ5

2
=

1

4

(
1 + γ5 − γ5 − (γ5)2

)
= 0 . (12.74)

These projector will project the states onto γ5 eigenspace to eigenvalue ±1. Because Tr γ5 = iTr
(
γ0γ1γ2γ3

)
=

0, the number of the two eigenvalue ±1 must be the same. So the dimension of each eigenspace is 2.

Theorem 12.3. Eigenspace of γ5 is invariant under SL(2,C) transformation.

Proof: Consider the generator of SL(2,C) transformation Sµν and

Sµν
1± γ5

2
=
i

4
[γµ, γν ]

1± γ5

2

{γ5,γµ=0}
=

1± γ5

2

i

4
[γµ, γν ] =

1± γ5

2
Sµν . (12.75)

We conclude that the eigenspaces are irreducible (12 , 0) and (0, 12) subspaces of the rep. (12 , 0)⊕ (0, 12).
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Chapter 13

Discrete symmetries and CPT theorem

13.1 Beyond SO↑(1, 3)

Recall that SO↑(1, 3) is the connected component of O(1, 3), which contains the identity,

SO↑(1, 3) = Kerϕdet ∩ Kerϕsgn . (13.1)

What about the other 3 components, obtained by adjoining

space inversion P =


1

−1

−1

−1

 , time reversal T =


−1

1

1

1

 , (13.2)

and PT to SO↑(1, 3). These may or may not be symmetries of fundamental interactions. If they are, those
should exist operation P = U(P) and T = U(T) acting on the Hilbert space which acts as

PU(a,Λ)P−1 = U(Pa,PΛP−1) ,

TU(a,Λ)T−1 = U(Ta,TΛT−1) .
(13.3)

13.2 Action of P, T on Poincaré generator

13.2.1 Parity

Recall U(a, 1) = eiaµP̂
µ , where P̂µ = (Ĥ, P̂ i) (we add the hat to distinguish with the representation of the

space inversion P .).

PU(a, 1)P−1 = P
(

1 + iaµP̂
µ + . . .

)
P−1 = 1 + iaµPP̂

µP−1 + . . .

!
= U(P, 1) = 1 + i(Pa) · P̂ + . . . ,

(13.4)

which gives
PiP̂P−1 = iPP̂ . (13.5)
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If P is linear, unitary (Wigner’s theorem), we have

PP̂P−1 = P · P̂ ⇔

PĤP−1 = H

PP̂ iP−1 = −P̂ i
. (13.6)

To study the action on Lorentz generator, note that for ∀Λ ∈ SO↑(1, 3),

PΛP−1 ∈ SO↑(1, 3) ,

TΛT−1 ∈ SO↑(1, 3) .
(13.7)

P and T act via conjugation on Lie algebra so(1, 3). For U(a,Λ) = exp
(
i
2ωµν Ĵ

µν
)
= U(Λ), where

Λρσ = δρσ + ωρσ + . . . , (13.8)

and

V µν =


0 K1 K2 K3

−K1 0 J3 −J2
−K2 −J3 0 J1

−K3 J2 −J1 0

 , (13.9)

we have
PU(Λ)P−1 = P

(
1 +

i

2
ωµνJ

µν + . . .

)
P−1

!
= U(PΛP−1) = 1 + i(PωP−1)µν Ĵ

µν + . . .

⇒ P ĴµνP−1 = (JĴP)µν ⇔

PK̂iP−1 = −K̂i

P Ĵ iP−1 = Ĵ i
,

(13.10)

for i = 1, 2, 3.

13.3 Time reversal

Similar to the parity operator, denoting T = U(T), we should get

TU(a, 1)T−1 = U(Ta, 1) ⇒ TiP̂T−1 = iT · P̂ . (13.11)

Assume T is linear, T P̂T−1 = T · P̂ ⇒ TĤT−1 = −H. If T is a symmetry, for any state |ψ〉 of energy E,
∃ |φ〉 = T |ψ〉 such that H |φ〉 = HT |ψ〉 = −TH |ψ〉 = −E |φ〉, leading to the negative energy solution. So
the only possible choice is that T is anti-linear. Assume that T is anti-linear

TiP̂T−1 = iT · P̂ ⇒ −iT P̂T−1 = iT · P̂ ⇒



TĤT−1 = H

TP̂ iT−1 = −P̂ i

TK̂iT−1 = K̂i

T Ĵ iT−1 = −Ĵ i

. (13.12)
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13.4 Action of P, T on Hilbert space

Exemplified: on parity and massive representation of SO↑(1, 3) or SL(2,C). Consider |ψk,σ〉, where k =

(m, 0, 0, 0) in a given irrep of SO(3) or SU(2),

P̂µ |ψk,σ〉 = kµ |ψk,σ〉 ,

Ĵ3 |ψk,σ〉 = σ |ψk,σ〉 .
(13.13)

Then

P̂µP |ψk,σ〉 = P (P · P̂ )µ |ψk,σ〉 = P (P · k)µ |ψk,σ〉
~k=0
= kµP |ψk,σ〉 , (13.14)

which gives the same momentum.

Ĵ3P |ψk,σ〉 = P Ĵ3 |ψk,σ〉 = σP |ψk,σ〉 . (13.15)

If we assume that the joint eigenspaces are non-degenerate, P |ψk,σ〉 = η |ψk,σ〉 with |η| = 1 (up to a phase).
Is there any σ-dependence in η? Notice that the raising and lowering operator Ĵ1± iĴ2 of σ commute with
P , η is σ independent. Is there any momentum dependence of η? Consider

|ψp,σ〉 = U(L(p)) |ψk,σ〉 ⇒ P |ψp,σ〉 = PU(L(p))P−1P |ψk,σ〉 = U
(
PL(p)P−1

)
ηk |ψk,σ〉 . (13.16)

Lemma 13.1.
PL(p)P−1 = L(Pp) . (13.17)

Proof: The L(p) can be decomposed into the boost along the z-axis and the rotation that rotates z-axis
to the direction of arbitrary spatial momentum ~p,

L(p) = R(ez → ~p) ◦B(~0 → |~p|ez) , (13.18)

then
PL(p)P−1 = PR(ez → ~p)PP−1B(~0 → |~p|ez)P−1 = R(ez → ~p)B(~0 → −|~p|ez)

= R(ez → −~p)B(~0− |~p|ez) = L(Pp) ,
(13.19)

where we have already used the result that the parity operator commutes with the generators of rotations
and anti-commutes with the generators of boosts.

Then the equation (13.16) becomes

P |ψp,σ〉 = U
(
PL(p)P−1

)
ηk |ψk,σ〉 = U(L(Pp))ηk |ψk,σ〉 = ηk |ψPp,σ〉 , (13.20)

which means that η is momentum independent. η is called the intertwine parity of the particle |ψk,σ〉. Note
that P 2 |ψp,σ〉 = Pηk |ψPp,σ〉 = η2 |ψp,σ〉, P 2 is called the internal symmetry (not related to the spacetime),
which commutes with all Poincaré generators.

Example 13.1. The standard model has the conserved charges baryon number QB(Q1), lepton number
QL(Q2) and electromagnetic charge Qem(Q3), ei

∑
αiQi for αi ∈ [0, 2π) is an internal symmetry. P is not

uniquely defined as we see in the example. For given P , we can define P ′ = Pei
∑
αiQi satisfies the same

relation of parity, but yield different numerical value for the intrinsic parity of particles. The intrinsic
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parity of 3 independent particles can be fixed by choosing αi appropriately.

The time reversal T is similar, except the occurring phase can be absorbed in the definition of the state
(due to the anti-linear of T ).

13.5 Transformation of quantum fields under the discrete symmetries
P and T

We exemplified on P and massive irreps.

13.5.1 Transformation of creation and annihilation operator

The creation operator
a†p,σ |0〉 =

1√
2ωp

|ψp,σ〉 , (13.21)

which gives
1√
2ωp

P |ψp,σ〉 =
1√
2ωp

η |ψPp,σ〉 = ηa†Pp,σ |0〉 = Pa†p,σP
−1P |0〉 , (13.22)

if we assume the vacuum is parity invariant, P |0〉 = |0〉, we conclude that

Pa†p,σP
−1 = ηa†Pp,σ

⇒ Pap,σP
−1 = η∗aPp,σ .

(13.23)

13.5.2 Complex scalar field

The parity transformation acting on the field,

Pφ(x)P−1 = P

∫
d3p

(2π)3
1√
2ωp

[
ape

−ipx + b†pe
ipx
]
P−1

=

∫
d3p

(2π)3
1√
2ωp

(
η∗aPpe

−ipx + ηcb†Ppe
ipx
)
,

(13.24)

where ηc is the intrinsic parity of anti-particle. By imposing ηc = η∗ to protect the theory, we have

η∗
∫

d3p

(2π)3
1√
2ωp

(
ape

−i(Pp)x + b†pe
i(Pp)x

)
= η∗φ(Px) , (13.25)

where we use the invariant measure property, ωp = ωPp„ P−1 = P and change the integration variable.

Remark 13.1. In a theory conserving parity, bound state of a scalar particle and its antiparticle mush
have parity ηηc = ηη∗ = 1.

13.5.3 Dirac spinor field

Using the same relation (13.23), we have

Pψ(x)P−1 =

∫
d3p

(2π)3
1√
2ωp

[
η∗uσ(Pp)aσ(p)e

ipPx + ηcvσ(Pp)b
†
σ(p)e

ipPx
]
. (13.26)
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By γ0S0iγ0 = −S0i, γ0Sijγ0 = Sij ,

⇒ DDirac(PΛP−1) = γ0DDirac(Λ)γ
0 , (13.27)

⇒ uσ(Pp) = DDirac (L(Pp))uσ(k) = DDirac(PL(p)P
−1)uσ(k)

= DDirac(PL(p)P
−1)uσ(k) = γ0DDirac(L(p))γ

0uσ(k) ,
(13.28)

where used the lemma (13.1). Notice that γ0uσ(k) = uσ(k), the equation reduces to γ0uσ(p). Likewise
vσ(Pp) = −γ0vσ(k), where the minus sign comes from γ0vσ(k) = −vσ(k). We conclude that

Pψ(x)P−1 = η∗γ0ψ(Px) , (13.29)

where we impose ηc = −η∗. In a theory conserving parity, the intrinsic parity of one survive bound state
of a Dirac spinor and antiparticle is ηηc = −|η|2 = −1. Recall that

u(k) =


c+ 0

0 c−

c− 0

0 c−

 , v(k) = i


0 −d+

d+ 0

0 −d−

d− 0

 . (13.30)

We need γ0u(k) = αu(k),

γ0u(k) =


c− 0

0 c−

c+ 0

0 c+

 ⇒ αc+ = c− , αc− = c+

⇔ α2 = 1, α = ±1, c+ = ±c− .

(13.31)

Likewise γ0v(k) = βv(k),

γ0v(k) =


0 −d−

d− 0

0 −d+

d+ 0

 ⇒ d+ = βd−, d− = βd+ ,

⇒ β=1, β = ±1, d+ = ±d− .

(13.32)

13.6 Charge conjugation

Processes which are not invariant under P, T transformation, are invariant under PT if we also exchange
particle and anti particles. We introduce the operator Ĉ, such that

ĈU(a,Λ)Ĉ−1 = U(a,Λ)

Ĉa†σ(p)Ĉ
−1 = ξb†σ(p) ,

(13.33)
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where ξ is the intrinsic phase. Similar analysis as above yields,

Ĉφ(x)Ĉ−1 = ξ∗φ∗(x) ,

Ĉψ(x)Ĉ−1 = −ξ∗iγ2ψ∗(x) .
(13.34)

13.7 CPT invariance

All Lorentz invariant interactions that we can construct from quantum fields lead to CPT invariant actions.
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Chapter 14

Spin statistics

14.1 What types of statistic are possible?

Before we start the discussion, we need to clarify what is statistic.

Definition 14.1. Statistics is identical particle behaviour of a product state under exchange of identical
particles.

Why the name partition function in statistical physics depends on statistics of particles? Recall that
a particle is specified by (geometrically) irreducible representation of the Poincaré group and a full set of
quantum numbers (for example, the electric charge) excluding the Poincaré quantum numbers. |~p, s, n〉,
where ~p is the momentum, s is the spin/helicity index, n is the special label. The state describing two
identical free particles of species will reside in the Hilbert space H n

1 ⊗ H n
1 , where n is the special label

and subscript 1 means the one particle Hilbert space.

H n
1 ⊗ H n

1 = 〈|~p1, s1;n〉 ⊗ |~p2, s2;n〉 , |~pi, si;n〉 ∈ H n
1 〉 . (14.1)

As first and second particle does not have an invariant meaning, we introduce subspace such that |~p1, s1, n, ~p2, s2, n〉
and |~p2, s2, n, ~p1, s1, n〉 are physically equivalent, which means that

|~p1, s1, n, ~p2, s2, n〉
!
= α |~p2, s2, n, ~p1, s1, n〉 (14.2)

with a phase. There comes to the next question: what α depends on?

14.1.1 Spin/helicity dependence of α

The subspace we introduce must carry a representation of the Poincaré group. First, consider two particles
of fiducial momentum k, the Hilbert space

V1 ⊗ V1 = (V1 ⊗ V1)s ⊕ (V1 ⊗ V1)a , (14.3)
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where V1 = 〈|k, s, n〉〉 and the subscript s means the symmetrized operation while a means the anti-
symmetrized operation,

(V1 ⊗ V1)s,a =

〈
1√
2
(|k, s1, n〉 ⊗ |k, s2, n〉 ± |k, s2, n〉 ⊗ |k, s1, n〉)

〉
, (14.4)

then α = ±1 because of the irreduciblity (can only lives in one subspace), so it is independent of spin/he-
licity.

14.1.2 Momentum dependence of α

If α depends on momentum, it must depend on p1, p2. By Lorentz invariance, it should

|~p1, s1, n; ~p2, s2, n〉 = α(p1 · p2)α(p2 · p1) |~p1, s1, n; ~p2, s2, n〉 ,⇒ α2(p1 · p2) = 1 , α(p1 · p2) = ±1 .

(14.5)
If we impose continuous dependence on momentum, the only possible situation is that it is momentum
independent.

Definition 14.2. If α(n) = 1, n is a boson. α(n) = −1, n is a fermion.

14.1.3 Anyons

In two dimensional case, there exists much more particle types (α can take arbitrary U(1) value), which is
called the anyon.

14.2 The spin-statistic theorem

Bosons transform in integer spin representaion of Lorentz group (i.e. irreps of little group SU(2), labelled
by Z). Fermions transform in half-integer spin representations. We will check this argument via the Lorentz
invariance of time-ordering. For time-ordering to be a Lorentz invariant concept, the ordering of space-like
separated fields should not matter.

Remark 14.1. When |x− y|2 < 0, sgb(x0 − y0) is Lorentz frame dependent.

Following this spirit, we study the (anti) commutation relations of space-like separated fields.

14.2.1 Real scalar field

For real scalar field
φ(x) =

∫
d3p

(2π)3
1√
2ωp

(
a†pe

ipx + ape
−ipx

)
, (14.6)
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[φ(x), φ(y)] =

∫
d3p

(2π)3

∫
d3q

(2π)3

(
[a†p, aq]e

ipx−iqy + [ap, a
†
q]e

−ipx+iqy
)

=

∫
d3p

(2π)3
1

2ωp

(
−e−ip(x−y) + eip(y−x)

)
=

∫
d4p

(2π)4
δ(p2 −m2)Θ(p0)

(
−e−ip(x−y) + eip(y−x)

)
=

∫
d4Λp

(2π)4
δ(p2 −m2)Θ(p0)

(
−e−i(Λ−1p,x−y) + e−i(Λ

−1p,x−y)
)

detΛ=1
=

∫
d4Λp

(2π)4
δ(p2 −m2)Θ(p0)

(
−ei(p,Λ(x−y)) + e−i(p,Λ(x−y))

)
.

(14.7)

If (x− y)2 < 0, we can choose Λ such that (Λ(x− y))0 = 0, which gives

⇒ [φ(x), φ(y)]
(x−y)2<0

=

∫
d3p

(2π)3
1

2ωp

(
e−i~p·(~x−~y) + ei~p·(~x−~y)

)
= 0 . (14.8)

14.2.2 Dirac field

ψ(x) =

∫
d3p

(2π)3
1√
2ωp

∑
σ=±1

[
uσ(p)aσ(p)e

−ipx + vσ(p)b
†
σ(p)e

ipx
]
, (14.9)

Choose canonical commutation of anti commutation relations? We denote the anticommutator as [·, ·]+
and continue the calculation to see the result.

[ψ(x), ψ†(y)]± =

∫
d3p

(2π)3
1√
2ωp

∫
d3q

(2π)3
1√
2ωq

∑
σσ′

(
e−ipx+iqyuσ(p)u

†
σ′(p)[aσ(p), aσ′ ]±

+eipx−iqyvσ(p)v
†
σ′(q)[b

†
σ(p), bσ′(q)]±

)
.

(14.10)

We set
[aσ(p), aσ′ ]± = (2π)3δσσ′δ(3)(~p− ~q)

[b†σ(p), bσ′(q)]± = ±(2π)3δσσ′δ(3)(~p− ~q) ,
(14.11)

where we notice that what important is the relative sign, so we can fix the result at the first line. We will
determine the sign (commutator or anti-commutator) later. We also need to finish the spin sum,∑

σ

uσ(p)u
†
σ(p) =

∑
σ

L(p)Suσ(k)u
†
σ(k)L(p)

†
S , (14.12)

with

∑
σ

uσ(k)u
†
σ(k) =

√
m


1

0

1

0

+
√
m
(
1 0 1 0

)
+
√
m


0

1

0

1

√
m
(
0 1 0 1

)

= m

(
1 1

1 1

)
= m

(
14×4 + γ0

)
,

(14.13)

the spin sum reduces to ∑
σ

uσ(p)u
†
σ(p) = m

(
L(p)Sγ

0L(p)−1
S γ0 + γ0

)
, (14.14)
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where we used (γ0)2 = 1. With Λ−1γµΛ = Λµνγν ,

L(p)Sγ
0L(p)−1

S = L−1(p)0µγ
µ , (14.15)

with L−1(p)0µ =
pµ
m , we have ∑

σ

uσ(p)u
†
σ(p) = (/p+m)γ0 . (14.16)

Likewise ∑
σ

vσ(p)v
†
σ(p) = L(p)S

∑
σ

vσ(k)v
†
σ(k)L

†(p)S = (/p−m)γ0 , (14.17)

as
∑

σ vσ(k)v
†
σ(k) = m(1 − γ0). Then

[ψ(x), ψ†(y)]± =

∫
d3p

(2π)3
1

2ωp

(
e−ip(x−y)(/p+m)± eip(x−y)(/p−m)

)
γ0

= (i/∂ +m)[ψ(x), ψ†(y)]± =

∫
d3p

(2π)3
1

2ωp

(
e−ip(x−y) ∓ eip(x−y)

)
γ0 ,

(14.18)

In order to let result vanishes when the fields are space-like separated, we need to anticommutator [·, ·]+.

Remark 14.2. Recall the specific form of u(k) and v(k). It is good under the parity and time reversal
transformation.

We need to impose

{aσ(p), a†σ′(q)} = [aσ(p), a
†
σ′(q)]+ = (2π)3δσσ′δ(3)(~p− ~q) , (14.19)

and likewise for anti particles. We then extend to equal time canonical anti-commutator relations

{aσ(p), aσ′(q)} = {a†σ(p), a
†
σ′(q)} = 0 = {aσ(p), bσ′(q)} = . . . (14.20)

It gives,
{ψ(x), ψ(y)} = 0 , (14.21)

which forces a modification of the definition of the time-ordering of fermions. For (x− y)2 < 0

T
{
ψ(x)ψ†(y)

}
= T

{
−ψ†(y)ψ(x)

}
= −T

{
ψ†(y)ψ(x)

}
, (14.22)

where the last equal comes from the linearity of time order product. If we denote Ψ = ψ,ψ†

⇒ T {Ψ(x1), . . . ,Ψ(xn)} = sgn(σ)Ψ(xσ(1)) . . .Ψ(xσ(m)) , (14.23)

where x0σ(1) > . . . x0σ(n), sgn(σ) = (−1)# of transposition to get σ.

Example 14.1.
T{ψ(x)ψ(y)} = Θ(x0 − y0)ψ(x)ψ(y)−Θ(y0 − x0)ψ(y)ψ(x) . (14.24)
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14.3 Time ordering for interacting fields

Time ordering prescription is Lorentz invariant. For interacting fields, it becomes

〈Ω|T {Φ(x1) . . .Φ(xn)} |Ω〉 =
〈0|T

{
Φ0(x1) . . .Φ0(xn)e

i
∫

Lintd4x
}
|0〉

〈0|T
{
ei

∫
Lintd4x

}
|0〉

. (14.25)

We need to extend the relation to matrix element between arbitrary basis vectors, it is straightforward for
choice of in/out states as basis.
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Chapter 15

Quantum Electrodynamics

The Lagrangian we focus on is the QED Lagrangian with the minimal coupling to photon

L = ψ̄
(
i /D −m

)
ψ − 1

4
FµνFµν , with Dµ = ∂µ + ieAµ . (15.1)

15.1 The Dirac propagator

We want to first compute
〈0|T

{
ψα(0)ψ̄β(x)

}
|0〉 , (15.2)

where α, β are spinor indices. The vacuum expectation value is

〈0|ψα(0)ψ̄β(x) |0〉 =
∫

d3p

(2π)3
1√
2ωp

d3q

(2π)3
eiqx√
2ωq

∑
σσ′

uασ(p)ū
β
σ′(q) 〈0| aσ(p)a†σ′(q) |0〉

=

∫
d3p

(2π)3
1√
2ωp

d3q

(2π)3
eiqx√
2ωq

∑
σσ′

uασ(p)ū
β
σ′(q) 〈0| {aσ(p), a†σ′(q)} |0〉

=

∫
d3p

(2π)3
1√
2ωp

d3q

(2π)3
eiqx√
2ωq

∑
σσ′

uασ(p)ū
β
σ′(q)(2π)

3δσσ′δ(3)(~p− ~q)

=

∫
d3p

(2π)3
eipx

2ωp

∑
σ

uασ(p)ū
β
σ(p) ,

(15.3)

Notice that we finish the spin sum before,∑
σ

uασ(p)ū
β
σ(p) = (/p+m)αβ , (15.4)

we have
〈0|ψα(0)ψ̄β(x) |0〉 = (−i/∂ +m)αβ

∫
d3p

(2π)3
1

2ωp
eipx . (15.5)

Similarly,

〈0| ¯ψβ(x)ψα(0) |0〉 =
∫

d3p√
2ωp

d3q√
2ωq

e−ipx
∑
σσ′

v̄βσ(p)v
α
σ′(q) 〈0| bσ(p)b†σ′(q) |0〉

= −(−i/∂ +m)αβ

∫
d3p

(2π)3
1√
2ωp

e−ipx ,

(15.6)
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then the time order product is

〈0|T
{
ψ(0)ψ̄(x)

}
|0〉 = 〈0|ψ(0)ψ̄(x) |0〉Θ(−t)− 〈0| ψ̄(x)ψ(0) |0〉Θ(t)

= (−i/∂ +m)

∫
d3p

(2π)3
eipxΘ(−t) + e−ipxΘ(t)

2ωp
.

(15.7)

Here the ∂t will act on the Heaviside function, adding δ function term. However, it is cancelled with each
other so we can safely move the derivative out of the whole term. Using the formula (5.8), we write

〈0|T
{
ψ(0)ψ̄(x)

}
|0〉 = (−i/∂ +m)

∫
d4p

(2π)4
ieipx

(p0)2 − ω2
p + iε

=

∫
d4p

(2π)4
i(/p+m)

p2 −m2 + iε
eipx .

(15.8)

By translation invariance of the vacuum, i.e. eipx |0〉 = |0〉, we have

〈0|T
{
ψ(y)ψ̄(x)

}
|0〉 = (−i/∂ +m)

∫
d4p

(2π)4
ieipx

(p0)2 − ω2
p + iε

=

∫
d4p

(2π)4
i(/p+m)

p2 −m2 + iε
eip(x−y) .

(15.9)

The graphical description is
ψ̄β(x) ψα(y) (15.10)

15.2 LSZ and external propagator

The LSZ reduction formula of QED is

i

∫
d4xeipx(2+m2)ψ(x) =

√
2ωp

∑
σ=± 1

2

uσ(p) (ap,σ(∞)− ap,σ(−∞))

i

∫
d4xe−ipx(2+m2)ψ(x) =

√
2ωp

∑
σ=± 1

2

vσ(p)
(
b†p,σ(−∞)− b†p,σ(∞)

)
i

∫
d4xeipx(2+m2)ψ̄(x) =

√
2ωp

∑
σ=± 1

2

v̄σ(p) (bp,σ(∞)− bp,σ(−∞))

i

∫
d4xe−ipx(2+m2)ψ̄(x) =

√
2ωp

∑
σ=± 1

2

ūσ(p)
(
a†p,σ(−∞)− a†p,σ(∞)

)
.

(15.11)

Pay attention that the plus sign of eipx means the outgoing particle while the minus sign means the
incoming particle. We need to project the field onto state of given spins, by using

ūσ(p)uσ′(p) = 2mδσσ′ = − δvσ (p)vσ′(p) , (15.12)

the summation will select the given spin we want, then we have

• For incoming particle (a†(−∞)), insert ψ̄(x)uσ(p)/2m.
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• For incoming anti-particle (b†(−∞)), insert −v̄σ(p)ψ(x)/2m.

• For outgoing particle (a(∞)), insert ūσ(p)ψ(x)/2m.

• For outgoing anti-particle (b(∞)), insert −ψ̄(x)vσ(p)/2m.

Example 15.1. For concreteness we check one example to see what happen if we do the insertion. For
instance, we check the effect of ψ̄(x)uσ(p)/2m insertion (incoming particle),

i

∫
d4xe−ipx(2+m2)ψ̄(x)

1

2m
uσ(p)

−→ i

∫
d4xe−ipx(−p2 +m2)

∫
d4q

(2π)4
i(/q +m)

q2 −m2 + iε
eiq(x−y)

1

2m
uσ(q)

= ie−ipy(−p2 +m2)
i(/p+m)

p2 −m2

1

2m
uσ(p)

= e−ipy
1

2m
(/p+m)uσ(p)

= e−ipyuσ(p)

(15.13)

where we evaluate this expression with ψ and their contractions, also the (/p −m)uσ(p) = 0. We set the
incoming momentum is on-shell. The propagator is amputated and replaced by polarization tensor.

Analogous computations for the other three cases yield the effect of insertions.

• Place external momentum on-shell

• amputate propagator, replace by appropriate Dirac polarization tensor

15.3 Momentum space Feynman rules

15.3.1 Propagators

• The photon propagator

p

µ ν =
−i

p2 + iε

[
gµν − (1− ξ)

pµpν
p2

]
. (15.14)

• The Fermion propagator
p

ψ̄β(x) ψα(y) =
i(/p+m)αβ

p2 −m2 + iε
. (15.15)

15.3.2 External lines

Again, the dot means the external point (the graph or the flow ends at this point).

• Incoming photon
p

µ = εµ(p) .
(15.16)
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• Outgoing photon
p

µ = ε∗µ(p) .
(15.17)

• Incoming particle (fermion)
p

= uσ(p) .
(15.18)

• Incoming antiparticle (fermion)
p

= v̄σ(p) .
(15.19)

• Outgoing particle (fermion)
p

= ūσ(p) .
(15.20)

• Outgoing antiparticle (fermion)
p

= vσ(p) .
(15.21)

15.3.3 Vertices

The corresponding interaction Lagrangian is Lint = −eψ̄γµψAµ, we have the trivalent vertex taking the
value

p1 p2

e− e−

= p1

p2

e−

e+

= . . . = −ieγµ . (15.22)

15.3.4 Index contractions

• µ of γµ contracts with

– gµν and the gauge term of the photon propagator.

– polarization tensor εµ, εµ∗ of external photons.

• The spinor indices, which can be made explicit by writing Lint = −eψ̄αγµαβψβAµ, generates the
graph

⇒
α β

= −ieγµαβ , (15.23)

contracts with

– Dirac propagator

β α =
i(/p+m)αβ

p2 −m2 + iε
. (15.24)

– external spinors.
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15.3.5 Sign I

We need to be careful about the relative signs due to

T {Ψ(x)Ψ(y)} = −T {Ψ(y)Ψ(x)} . (15.25)

To be safe, we start with some ordering or fields inside T , then reorder keeping track of signs to have the
fermionic fields that are contracted next to each other, in the order Ψ(x)Ψ̄(y).

15.3.6 Example: Møller scattering

Møller scattering: e−e− → e−e−. We have the following two Feynman diagrams,

iMt =

p1 p3

p1 − p3

p4p2

e− e−

e−e−

= (−ie)2ū(p3)γµu(p1)ū(p4)γνu(p2)
−igµν

(p1 − p3)2 + iε
, (15.26)

iMu =

e−

e− e−

e−

p1
p4

p2

p3

= −(−ie)2ū(p4)γµu(p1)ū(p3)γνu(p2)
−igµν

(p1 − p4)2
, (15.27)

where we temporarily hide the spin label σ on spinors and pay attention the red minus sign comes from the
anti-commutation of the Dirac field. Now we explicitly check the minus relative sign. Choose a random
order

〈Ω|T
{
ψα3(x3)ψ̄α1(x1)ψα4(x4)ψ̄α2(x2)

}
|Ω〉

→ 〈0|T
{
ψα3(x3)ψ̄α1(x1)ψα4(x4)ψ̄α2(x2)(−ie)

∫
d4xψ̄(x) /Aψ(x)

∫
d4yψ̄(y) /Aψ(y)

}
|0〉

= (−ie)2γµβ1β2γ
µ
β3β4

∫
d4x

∫
d4y

〈0|T
{
ψα3(x3)ψ̄α1(x1)ψα4(x4)ψ̄α2(x2)ψ̄(x)β1ψ(x)β2ψ̄(y)β3ψ(y)β4Aµ(x)Aν(y)

}
|0〉 ,

(15.28)

For t-channel (15.26), the contraction align would be

ψα3(x3)ψ̄β1(x)ψβ2(x)ψ̄α1(x1)ψα4(x4)ψ̄(y)β3ψ(y)β4ψ̄(x2)α2 , (15.29)
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with no extra sign (ψ̄βiψβj moves as a block). For u-channel (15.27), the contraction is

−ψα4(x4)ψ̄β1(x)ψβ2(x)ψ̄α1(x1)ψα3(x3)ψ̄(y)β3ψ(y)β4ψ̄(x2)α2
(15.30)

is indeed with a extra sign.

15.3.7 Signs for fermion loops

A ψ̄γµψ fermion pair is separated when evaluating fermion loops.

p

k − p

k

p

.

(15.31)

The contraction looks like

(−ie)2γµα1α2
γνβ1β2 〈0|T

{
Aµ(x)Aν(y)ψ̄α1(x)ψα2(x)ψ̄β1(y)ψβ2(y)

}
|0〉

→ −ψβ2(y)ψ̄α1(x)ψα2(x)ψ̄β1(y) .
(15.32)

15.3.8 Sign II

Sign rules: a relative sign appears

• For each exchange of external fermions.

• For each fermion loop.

15.4 e+e− → µ+µ− scattering (and spin sums)

Any electrically charged fermion contributes to the Lagrangian via

ψ̄n(i /Dn −mn)ψn , /Dn = γµ(∂µ − ieQnAµ) . (15.33)

In this scattering process, Qe = −1, me = 511KeV, which is the electron. Qµ = −1, mµ = 106MeV, which
is the muon. The Feynman diagram is

iM =

p1

p2

p1 + p2

p4

p3
e−

e+ µ+

µ−

= (−ie)2v̄e(p2)γρue(p1)ūµ(p3)γνvµ(p4)
−i
(
gρν − (1− ξ)

kρkν
m2

)
(p1 + p2)2

, (15.34)
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the ξ-dependence can be extracted as

v̄e(p2)(/p1 + /p2)ue(p1) = v̄e(p2)(me −me)ue(p1) = 0 , (15.35)

where we use (/p − m)u(p) = v̄(p)(/p + m) = 0. Likewise for the second spinor bilinear, ξ-dependence
vanishes. To obtain the cross-section, need |M |2 = M †M ,

(v̄e(p2)γ
µue(p1))

† = ue(p1)
†(γµ)†(γ0)†ve(p2) = ue(p1)

†γ0γµve(p2) = ūe(p1)γ
µve(p2) , (15.36)

the amplitude is then

|M |2 = e4

s2
[v̄e(p2)γ

ρue(p1)ūµ(p3)γρvµ(p4)] [ūe(p1)γ
νve(p2) δvµ (p4)γνuµ(p3)] . (15.37)

Unpolarized Scattering

If we do not measure spin in outgoing channel, we should sum over all outgoing spins,∑
σ3,σ4

|M (σ1, σ2, σ3, σ4)|2 = |M |2unpolarized . (15.38)

All the polarization related to muon should be sum over,

|M |2unpolarized =
e4

s2
v̄e(p2)γ

ρue(p1)ūe(p1)γ
νve(p2)

×
∑
σ3σ4

ūσ3α (γρ)αβv
σ4
β v̄

σ4
γ (γν)γδu

σ3
δ ,

(15.39)

with ∑
σ

uσ(p3)ū
σ(p3) = /p3 +m,

∑
σ

vσ(p4)v̄
σ(p4) = /p4 −m. (15.40)

the summation reduces to

×
∑
σ3σ4

ūσ3α (γρ)αβv
σ4
β v̄

σ4
γ (γν)γδu

σ3
δ

= (/p3 +m)δα(γρ)αβ(/p4 −m)βγ(γν)δγ = Tr
[
(/p3 +mµ)γρ(/p4 −mµ)γν

]
.

(15.41)

Averaging over incoming spinors

If incoming beams are unpolarized: density matrix with equal probability 1/2 for either spin, we need to
sum over the spins, weighted by (1/2)2. Thus the result is

1

4

∑
spins

|M |2 = e4

s2
Tr
[
(/p1 +me)γ

ν(/p2 −me)γ
ρ
]
Tr
[
(/p3 +mµ)γρ(/p4 −mµ)γν

]
=

2e4

s2
[
u2 + t2 + 4s(m2

e +m2
µ)− 2(m2

e +m2
µ)

2
]
.

(15.42)
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The differential cross section in center mass frame for 2 → 2 scattering is(
dσ

dΩ

)
CM

=
1

64π2E2
CM

|~pf |
|~pi|

|M |2 . (15.43)

In ultra-relativistic limit me,mµ � E,(
dσ

dΩ

)
CM

=
α2

4E2
CM

(1 + cos2 θ) . (15.44)
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Chapter 16

Path Integral

16.1 Warm up: quantum mechanics in 1D system via path integral

Typically H(x̂, p̂) = p̂2

2m + V (x), with canonical commutation relation [x̂, p̂] = i. For more general H, we
choose to order operators with p̂ to the left of x̂. In Heisenberg picture

x̂(t) = eiĤtx̂e−iĤt ,

p̂(t) = eiĤtp̂e−iĤt
(16.1)

states are time-independent, but the eigenstates are time-independent, the corresponding operators are

x̂ |x〉 = x |x〉 ⇒ x̂(t) |x(t)〉 = x̂(t)eiĤt |x〉 = eiĤtx |x〉 = x |x, t〉 . (16.2)

|x, t〉 is the eigenstate of the eigenvalue x of operator x̂(t). The task (with application to QFT) is that for
given two eigenstates |x〉, |x′〉 of x̂, evaluate 〈x′, tf |x, ti〉.〈

x′, tf
∣∣x, ti〉 = 〈x′∣∣ eiĤ(tf−ti) |x〉 , (16.3)

First, assume ∆t = tf − ti � 1, we can use the linear approximation of e−iH∆t,

〈
x′, ti +∆t

∣∣x, ti〉 = 〈x′∣∣1 − iH(x̂, p̂)∆t |x〉 =
〈
x′
∣∣ e−iH(x,p̂)∆t |x〉 . (16.4)

Introducing 1 =
∫
|p〉 〈p|, we have

=

∫
dp
〈
x′
∣∣p〉 〈p| e−iH(x,p̂)∆t |x〉

=

∫
dp

(
1√
2π

)2

eipx
′−ipxe−iH(x,p)∆t

=
1

2π
e−iV (x)∆t

∫
dpe−i

p2

2m
∆t+ip(x′−x)

=

√
2m

∆t

1

2
√
π
e
i∆t

[
m
2

(
x′−x
∆t

)2
−V (x)

]
,

(16.5)
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where the factor in the exponential is the Lagrangian L
(
x, x

′−x
∆t

)
. For finite time tf − ti, the strategy is

to divide the internal into (n+ 1) pieces: tf − ti = (n+ 1)∆t. Introduce at each tk = ti + k∆t,

1 =

∫
dx |x〉 〈x| = eiĤtk

∫
dx |x〉 〈x| e−iĤtk =

∫
dx |x, tk〉 〈x, tk| . (16.6)

⇒
〈
x′, tf

∣∣x, ti〉 = ∫ dx1 . . . dxn
〈
x′, tf

∣∣xn, tn〉 〈xn, tn|xn−1, tn−1〉 . . . 〈x1, t1|xi, ti〉

= Nn+1

∫
dx1 . . . dxne

i∆t
[
L
(
xn,

x′−xn
∆t

+...L
(
xi,

x1−xi
∆t

))]
,

(16.7)

where N =
√

2m
∆t

1
2
√
π

. String together x1, . . . , xn into differentiable function1 x(t) with x(ti) = x, x(tf ) =
x′. Define a measure D(x(t)) on this space of differentiable function

D(x(t)) = lim
n→∞

n∏
i=1

dxi , (16.8)

such that 〈
x′, tf

∣∣x, ti〉 = Ñ

∫ x(tf )=x
′

x(ti)=x
Dx(t)ei

∫ tf
ti

dtL(x,ẋ) = Ñ

∫ x(tf )=x
′

x(ti)=x
Dx(t)eiS . (16.9)

Remark 16.1. In classical limit ~ → 0, stationary phase argument applies to eiS/~. Path integral is
dominated by stationary phase of S, i.e. by classical trajectory (solution of EoM).

16.2 Path integral in QFT (bosonic)

16.2.1 Completeness relation in QFT

One particle quantum mechanics: the eigenbasis of x̂ is x̂ |x〉 = x |x〉. In the n particle quantum mechanics,
the eigenbasis of x̂i is

x̂i |x1, . . . , xn〉 = xi |x1, . . . , xn〉 , (16.10)

with [x̂i, x̂j ] = 0. The QFT eigenbasis of φ̂(x) (where the continuous index plays the role of i),

φ̂(x0) |{φ(~x)}〉 = φ(~x0) |{φ(~x)}〉 . (16.11)

The completeness relation expressed via functional integral

1 =

∫
Dφ(x) |{φ(x)}〉 〈{φ(x)}| . (16.12)

Likewise, π̂(~x0) |{π(x)}〉 = π(~x0) |{π(~x)}〉. By

[φ̂(x), π̂(~y)] = iδ(3)(~x− ~y) , (16.13)

〈{π(~x)}|{φ(~x)}〉 = exp

[
−i
∫
d3xπ(x)φ(x)

]
. (16.14)

1The mathematical process here is not rigorous, which might be the root reason of the divergence of path integral. Too
many curves are added into the integration.
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Also, φ̂(~x)(t) = φ̂(~x, t) = eiĤtφ̂(~x)e−iĤt, |{φ(~x)}, t〉 = eiĤt |{φ(~x)}〉,

⇒
〈
{φ′(~x)}, tf

∣∣{φ(~x)}, ti〉 = N

∫ φ(~x,tf )=φ
′(~x)

φ(~x,ti)=φ(~x)
Dφ(~x, t)ei

∫
d4xLint(φ,∂iφ) , (16.15)

where

Dφ(~x, t) = lim
n→∞

n∏
i=1

Dφi(~x) . (16.16)

16.2.2 Time ordered product

If φ(xj , tj) is the eigenvalue of φ̂(xj , tj). What is∫
Dφ(~x, t)eiS[φ]φ(~xj , tj) ? (16.17)

Follow the argument reversed,∫ ∏
k

Dφk(~x)
〈
{φ′(~x)}, tf

∣∣ e−iĤ∆t |{φn(~x)}, tn〉 . . . e−iĤ∆tφ(~xj , tj) |{φj(~x)}, tj〉 . . . 〈{φ1(~x)}, t1|{φ(~x)}, ti〉 .

(16.18)
Notice that φ(~xj , tj) |{φj(~x)}, tj〉 = φ̂(~xj , tj) |{φj(~x)}, tj〉, and collapse all completeness relation, the final
result is 〈

{φ′(~x)}, tf
∣∣ φ̂(~xj , tj) |{φ(~x)}, ti〉 . (16.19)

Likewise,

N

∫
Dφ(~x, t)eiS[φ]

m∏
j=1

φ(~xj , tj) =

〈
{φ′(~x)}, tj

∣∣T


m∏
j=1

φ̂(~xj , tj)

 |{φ(~x)}, ti〉 .

(16.20)

The time ordering is naturally emerged!

16.2.3 Projecting onto the vacuum

By inserting the completeness relation

〈Ω|T
{
φ̂(x1) . . . φ̂(xn)

}
|Ω〉 =∫

Dφ′(~x)Dφ(~x)
〈
Ω
∣∣{φ′(~x)},∞〉 〈{φ′(~x)},∞∣∣T {

φ̂(x1) . . . φ̂(xn)
}
|{φ(~x)},∞〉 〈{φ(~x)},∞|Ω〉 ,

(16.21)

Define

M ∗
φ′ =

〈
Ω
∣∣{φ′(~x)},∞〉 ,

Mφ = 〈{φ(~x)},∞|Ω〉 ,〈
{φ′(~x)},∞

∣∣T {
φ̂(x1) . . . φ̂(xn)

}
|{φ(~x)},∞〉 = Ñ

∫ φ(~x,+∞)=φ′(x)

φ(~x,−∞)=φ(x)
Dφ(~x, t)eiS[φ]

∏
j

φ(xj) ,

(16.22)
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the expression can be written as ∫
Dφ(~x, t)M ∗

φ′Mφe
iS[φ]

∏
j

φ(xj) . (16.23)

The integral region is unconfined. In Weinberg’s book [2], for the factor M ∗
φ′Mφ, we can argue that the

final effect is adding the −iεφ2 term to L . So we conclude that

〈Ω|T
{
φ̂(x1) . . . φ̂(xn)

}
|Ω〉 =

∫
Dφ(~x, t)eiS[φ]

∏
j φ(xj)∫

Dφ(~x, t)eiS[φ]
, (16.24)

with normalization 〈Ω|Ω〉 = 1 and L is modified by −iεφ2 term.

16.3 The generating functional (and how to compute)

Define generating functional (also partition function coupled to an external source,

Z[J ] =

∫
Dφ exp

[
iS[φ] + i

∫
d4xJ(x)φ(x)

]
, (16.25)

where J(x) is the external current. We define the functional derivative as derivative satisfying

δ

δJ(y)
J(x) = δ(4)(x− y) , (16.26)

such that
δ

δJ(y)

∫
d4xφ(x)J(x) = φ(y) . (16.27)

Then

⇒ 〈Ω|T

∏
j

φ(xj)

 |Ω〉 = (−i)n 1

Z[0]

δnZ[J ]

δJ(x1) . . . δJ(xn)

∣∣∣∣
J=0

. (16.28)

16.3.1 Computing Z[J ] in free theory - Gaussian integral

In free theory,

Z[J ] =

∫
Dφ exp

[
i

∫
d4x

(
−1

2
φ
(
2+m2 − iε

)
φ+ J(x)φ(x)

)]
. (16.29)

Evaluate this expression by taking n→ ∞ limit, with formula∫ +∞

−∞
. . .

∫ +∞

−∞

n∏
i=1

dxie
− 1

2
xiAijxj+Jixi =

√
(2π)n

detA
e

1
2
Ji(A

−1)ijJj , (16.30)

Remark 16.2. Here we identify the φ and x label here.

here A = i(2+m2 − iε) (required for convergence of Gaussian), Ji 7→ iJ(x). A−1 defined via

i(2x +m2 − iε)A−1 = δ(x− y) ⇒ A−1 = iπ(x− y) =

∫
d4p

(2π)4
1

p2 −m2 + iε
eip(x−y) , (16.31)
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which is the green function. The final result is

Z[J ] = Z[0] exp

[
−i
∫
d4x

∫
d4y

1

2
J(x)π(x− y)J(y)

]
. (16.32)

16.3.2 Feynman rules for free theory via path integral

The two point function is

〈0|T {φ(x1)φ(x2)} |0〉 = (−i)2 1

Z[0]

δ2

δJ(x1)δJ(x2)
Z[J ]

∣∣∣∣
J=0

= (−i)2 δ

δJ(x2)

1

Z[0]
(−i)

∫
d4xJ(x)π(x− x1)Z[J ]

∣∣∣∣
J=0

= iπ(x1 − x2) ,

(16.33)

which exactly reproduces the results from canonical propagator.

16.3.3 Evaluation of path integral in interacting theory

In the interacting theory,

〈Ω|T
{
φ̂(x1) . . . φ̂(xn)

}
|Ω〉 =

∫
Dφ(~x, t)eiS[φ]

∏
j φ(xj)∫

Dφ(~x, t)eiS[φ]

=
Dφei(S0+Sint)

∏
j φ(xj)∫

Dei(S0+Sint)

=

∫
DφeiS0

∏
φ(xi)e

iSint∫
DφeiS0

∫
DφeiS0∫

DφeiS0eiSint

=
〈0|T

{∏
i φ̂(xi)e

iSint
}
|0〉

〈0|T {eiSint} |0〉
.

(16.34)

16.4 Fermionic path integral

The essential ingredient in derivation of bosonic path integral is

• ∃ a set of eigenbasis of H of x̂, p̂, with [x̂, p̂] = i, have the complete relation

1 =

∫
dx |x〉 〈x| =

∫
dp |p〉 〈p| . (16.35)

• 〈p|x〉 ∝ e−ipx.

In fermionic theory, the canonical operators q̂i, p̂j satisfy anticommutation relations {q̂i, p̂j} = iδij ,
{q̂i, q̂j} = {p̂i, p̂j} = 0.

Remark 16.3. No non-trivial eigenstate to q̂i, p̂i.

Proof: Assume that |q1, . . . , qn〉 is such a state, then

q̂iq̂j |q1, . . . , qn〉 = q̂iqj |q1, . . . , qn〉 = qjqi |q1, . . . , qn〉 , (16.36)
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in another direction
q̂iq̂j |q1, . . . , qn〉 = −q̂j q̂i |q1, . . . , qn〉 = −qiqj |q1, . . . , qn〉 (16.37)

⇒ qiqj = 0 , (16.38)

where there indeed exist a problem.

16.4.1 Construction of representation space of fermionic operator algebra

• Let |0〉 be annihilated by all q̂i, q̂i |0〉 = 0.

• Define Hf = 〈|0〉 , p̂i |0〉 , p̂ip̂j |0〉 , . . . , p̂1 . . . p̂n |0〉 |i < . . . < j〉C. Hf is clearly closed under the action
of q̂i and p̂i. To organize states fo Hf in terms of eigenbasis to q̂i, p̂i. We will introduce anti-
commutating variables.

16.4.2 Grassmann algebra

A Grassmann algebra Gq over C:

• a complex vector space generated freely by elements qi, qiqj , q1 . . . qn: 1 ≤ i < . . . < j ≤ n.

• an associate anti-commutative product induced by qi × qj = −qj × qi with qi × . . . × qj = qi . . . qj

with i < . . . < j.

We then introduce H q
f = Gq ⊗C Hf . Let {q̂1, . . . , q̂n, p̂1, . . . , p̂n} act on H q

f by imposing {qi, q̂j} =

{qi, p̂j} = 0, such that
p̂ip̂j(qk |0〉) = qk (p̂ip̂j |0〉) ∈ H q

f . (16.39)

16.4.3 Eigenvectors to q̂i in H q
f

We define

|q〉 := exp

−i n∑
j=1

p̂jqj

 |0〉

=

1− i

n∑
j=1

p̂jqj + . . .+
(−i)n

n!

 n∑
j=1

p̂jqj

n |0〉 .

(16.40)

The higher order expansion vanishes because of the Grassmann variables. This is a single state, i.e. q in
|q〉 does not vary.

q̂i |q〉 = q̂i exp

−i n∑
j=1

p̂jqj

 |0〉 = q̂i exp(−ip̂iqi) exp

−i
∑
j 6=i

p̂jqj

 |0〉

= q̂i(1− ip̂iqi) exp

−i
∑
j 6=i

p̂jqj

 |0〉 = (q̂i − iq̂ip̂iqi) exp

−i
∑
j 6=i

p̂jqj

 |0〉

= (q̂i − i{q̂i, p̂i}qi + ip̂iq̂iqi) exp

−i
∑
j 6=i

p̂jqj

 |0〉 ,

(16.41)
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since q̂i |0〉 = 0, and q̂i anticommutes with the rest variable, we left with

q̂i |q〉 = qi exp

−i
∑
j 6=i

p̂jqj

 . (16.42)

Because q2i = 0, we can insert the term

q̂i |q〉 = qi(1− ip̂iqi) exp

−i
∑
j 6=i

p̂jqj

 |0〉

= qi exp

−i
n∑
j=1

p̂jqj

 |0〉 = qi |q〉 .

(16.43)

To define the eigenstates for the p̂i, we introduce a second set of Grassmann generators {p1, . . . , pn} with
{qi, pj} = {q̂i, pj} = {p̂i, pj} = 0. We now work in the Hilbert space

H q,p
f = Gq,p ⊗C Hf . (16.44)

The eigenstates for p̂i defined by

|p〉 := exp

(
−i

n∑
i=1

q̂ipi

)
N∏
i=1

p̂i |0〉 , (16.45)

with p̂j
∏n
i=1 p̂i |0〉 = 0. The same discussion will produce

p̂i |0〉 = pi |p〉 . (16.46)

Finally, define the dual Hilbert space built on 〈0| , 〈0| p̂i = 0 for ∀i, and 〈0|0〉 = 1 with basis

{〈0| , 〈0| q̂i, 〈0| q̂iq̂j , . . . , 〈0| q̂1 . . . q̂n|1 ≤ i < . . . < j ≤ n} . (16.47)

And eigenstate

〈q| = 〈0|
n∏
i=1

q̂i exp
(
−i
∑

qip̂i

)
, 〈q| q̂i = 〈q| qi ,

〈p| = 〈0| exp
(
−i
∑

piq̂i

)
, 〈p| p̂i = 〈p| pi .

(16.48)

We need to evaluate 〈q|p〉,

〈q|p〉 = 〈q| exp

(
−i

n∑
i=1

q̂ipi

)
n∏
i=1

p̂i |0〉 = exp

(
−i

n∑
i=1

qipi

)
〈q|

n∏
i=1

p̂i |0〉

= exp

(
−i

n∑
i=1

qipi

)
〈0|

n∏
i=1

q̂i exp
(
−i
∑

qip̂i

) n∏
i=1

p̂i |0〉 ,
(16.49)
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because of the fermionic property, only the zero order term in the exponential left, then

〈q|p〉 = exp

(
−i

n∑
i=1

qipi

)
〈0|

n∏
i=1

q̂i

n∏
i=1

p̂i |0〉 = χn exp

(
−i

n∑
i=1

qipi

)
, (16.50)

where χn is the phase factor depends on n. Likewise,

〈p|q〉 ∝ e−i
∑
piqi . (16.51)

16.4.4 Berezin integration

Note that both |q〉 and |p〉 are linear combinations (with Grassmann coefficients) of all the states

|0〉 , p̂i |0〉 , . . . , p̂1 . . . p̂n |0〉 . (16.52)

to access a given state in Hf , we want a tool which isolates a given coefficient of Grassmann generators.

Remark 16.4. In usual Hilbert space, innerproduct with the orthogonal basis can give us the coefficients.

Definition 16.1.
∫
dqj1 . . . dqjk acts on H q,p

f ⊗ Hboson via∫
dq1f(q1, . . . , qn) =

∫
dq1 (c0(q2, . . . , qn) + q1c1(q2. . . . , qn)) = c1(q2, . . . , qn) , (16.53)

and ∫
dq1 . . .

∫
dqnf =

∫
dq1

(
. . .

(∫
dqnf

)
. . .

)
. (16.54)

In particular, ∫
dqj1 . . . dqjm

∏
i∈I

qi = 0, if {j1, . . . , jm} 6⊂ I . (16.55)

Example 16.1. ∫
dq1dq2 (aq1 + bq1q2 + cq1q2q3) = −b− cq3 . (16.56)

Theorem 16.1.

1 = χ̃n
∫ n∏

i=1

dqi |q〉 〈q| , (16.57)

where χ̃n is the n-dependent phase. This is the fermionic completeness relation.

Proof: Consider |f〉 = p̂1 . . . p̂k |0〉 (without loss of generality),

〈q|f〉 = 〈0|
n∏
i=1

q̂i exp
(
−i
∑

qip̂i

)
p̂1 . . . p̂k |0〉

= 〈0|
n∏
i=1

q̂i
(−i)n−k

(n− k)!

(
n∑
i=1

qip̂i

)n−k
p̂1 . . . p̂k |0〉 ,

(16.58)

this step needs a little more explanation. First, since we have p̂i for i ≤ k, if the order is lager that n− k,
there must exists m (m ≤ k) such that p̂m appears twice at least, causing the expression vanished. If the
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order is less than n − k, there must exists l such that p̂l doesn’t appear in the expression. However, q̂l
anticommutes with all the other terms, and we could move it to the position next to the |0〉 (up to a sign
difference), annihilating the state. So only the (n− k)-th order term survives. Continue the calculation

= (−i)n−k 〈0|
n∏
i=1

q̂ip̂1 . . . p̂kqk+1p̂k+1 . . . qnp̂n |0〉 , (16.59)

where we use the property that qip̂i moves as a block, which doesn’t change the sign. So

= (−i)n−k(−1)1+2+...+(n−k) 〈0|
n∏
i=1

q̂ip̂1 . . . p̂n |0〉 qk+1 . . . qn . (16.60)

We set A = 1 + 2 + . . .+ (n− k) and χn = 〈0|
∏n
i=1 q̂ip̂1 . . . p̂n |0〉, substitute into the integral, we have

(−i)n−k(−1)Aχn

∫ n∏
i=1

dqi |q〉 qk+1 . . . qn , (16.61)

with definition of |q〉 = exp
(
−i
∑

j p̂jqj

)
|0〉, only the k-th order terms survive. We have

(−i)n−k(−1)Aχn

∫ n∏
i=1

dqi(−i)kp̂1q1 . . . p̂kqk |0〉 qk+1 . . . qn

= (−i)n(−1)Aχn

∫ n∏
i=1

dqi(−1)(n−k+1)+...+nq1 . . . qnp̂1 . . . p̂k |0〉

= (−i)n(−1)
∑n

j=1 jχn

∫ n∏
i=1

dqi(q1 . . . qn) |f〉 = χ̃n |f〉 .

(16.62)

We finish the proof.

16.4.5 Fermionic matrix elements via path integral

Introduce q̂i(t) = eiHtq̂ie
−iHt, p̂i(t) = eiHtp̂ie

−iHt, the eigenstate for these operators are

|q, t〉 = eiĤt |q〉 , |p, t〉 = eiĤt |p〉 . (16.63)

Now we want to evaluate 〈q′, tf |q, ti〉, where q′ represents the second set of Grassmann generators q′i. The
strategy is similar to the bosonic case. Divide the finite time into infinitesimal piece tf − ti = (N + 1)∆t,
introduce the completeness relation for a set of Grassmann variables {qki }i=1,...,n at each point tk = ti+k∆t.
Then 〈

q′, tf
∣∣q, ti〉 = ∫ ∏

i,k

dqki dp
k
i

N∏
i=0

exp

[
i∆t

∑
i

(
pli
ql+1
i − qli
∆t

−H(pl, ql)

)]
. (16.64)

Now take the limit ∆t→ 0, and introduce the independent Grassmann generators indexed by a continuous
variable t:

{qki }i=1,...,n → {qi(t)}i=1,...,n {pki } → {pi(t)} , (16.65)
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such that

〈
q′, tf

∣∣q, ti〉 = ∫ n∏
i=1

Dqi(t)

n∏
i=1

Dpi(t) exp

[
i

∫ tf

ti

dt

(∑
i

pi(t)q̇i(t)−H(pi(t), qi(t))

)]
. (16.66)

Remark 16.5. Unlike the bosonic case, in which H is quadratic in the canonical variable p. Because the
property of the Grassmann number, we do not perform the Dpi(t) integral as H,L are generically linear in
p, q.

16.4.6 Evaluation of fermionic path integral

Define generating function by coupling to fermionic (i.e. anti-commuting) currents,

Z[jp, jq] =

∫ ∏
Dqi(t)

∏
Dpi(t) exp

(
iS + i

∫
dt
∑
i

(pij
p
i + jqi qi)

)
. (16.67)

Besides, we introduce derivation with Grassmann variables,

∂

∂qi
q1 . . . qn = (−i)i−1q1 . . . qi−1

∂

∂qi
qiqi+1 . . . qn

= (−1)i−1q1 . . . qi−1qi+1 . . . qn .

(16.68)

The variation with respect to the current is

iδ

δjp1(t1)
. . .

iδ

δjpm(tm)

−iδ
δjqm+1(tm+1)

. . .
−iδ

δjqk(tk)
Z[jp, jq] =

∫ ∏
Dqi(t)

∏
Dpi(t)

m∏
r=1

pr(tr)

k∏
s=m+1

qs(ts) exp

[
iS + i

∫
dt
∑
i

(pij
p
i + jqi qi)

]
.

(16.69)

Z[jp, jq] can be evaluated for S of the form −piAikqk,∫ ∏
dqi
∏

dpi exp (−piAikqk + pij
p
i + jqi qi)

=

∫ ∏
dqi
∏

dpi exp
(
−(p− jqA−1)iAik(q −A−1jp)k + jqiA

−1
ik j

p
k

)
.

(16.70)

Notice that for f(q) = a+ bq, we have∫
dqf(q + j) =

∫
dq(a+ b(q + j)) =

∫
dqf(q) , (16.71)

we have ∫ n∏
i=1

dqi

n∏
i=1

dpie
−piAikqk =

(−1)n

n!

∫ ∏
dqi
∏

dpi(piAikqk)
n , (16.72)

where only the n order left because of the integration property. Here the repeated i, k indices mean the
summation. Rearranging the summation order, because piAikqk moves as a block and doesn’t change the
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sign, we can rewrite the expression.

=
(−1)n

n!

∫ ∏
dqi
∏

dpin!
∑

{i1,...,in}

(pnAn,inqin) . . . (p1A1,i1qi1)

= (−1)n(−1)
(n−1)n

2

∫ ∏
dqi
∏

dpipnpn−1 . . . p1
∑

{i1,...,in}

An,in . . . A1,i1qin . . . qi1

= (−1)n(−1)
(n−1)n

2

∫ ∏
dqi

∑
{i1,...,in}

An,in . . . A1,i1qin . . . qi1

= (−1)n(−1)
(n−1)n

2

∫ ∏
dqi

∑
{i1,...,in}

An,in . . . A1,i1(−1)σqn . . . q1

= (−1)
n(n+1)

2 detA ,

(16.73)

where σ is the number of the transposition, which can combine with the element of A and give the
determinant of A. So the integral is∫ ∏

dqi
∏

dpie
−piAikqk+pij

p
i +j

q
i qi = (−1)

n(n+1)
2 detAej

q
i (A

−1)ikj
p
k . (16.74)

16.4.7 The fermionic path integral in QFT

At a given time interval, we introduce a continuous family of Grassmann variables {ψ(~x, t)}, indexed by
the spatial vector ~x ∈ R3, with conjugate variables {ψ†(~x, t)}. The generating functional is

Z[η̄, η] =

∫
Dψ̄(~x, t)Dψ(~x, t) exp

[
i

∫
d4xψ̄(i/∂ −m)ψ + η̄ψ + ψ̄η

]
= Z[0] exp

[
−i
∫
d4x

∫
d4yη̄(y)(i/∂ −m)−1η(x)

]
,

(16.75)

where Z[0] = N det
(
i/∂ −m

)
and (i/∂ −m)−1 is the Dirac propagator.

16.5 Applications

16.5.1 The photon propagator

To obtain the propagator, we need to insert the photon kinetic term, which is

−1

4
FµνF

µν momentum space−→ 1

4
(kµAν − kνAµ)(k

µAν − kνAµ)

=
1

2
(k2A2 − (k ·A)2)

= −1

2
Aµ
(
−k2gµν + kµkν

)
Aν ,

(16.76)

however, the complexity raises here because −k2gµν + kµkν is not invertible. It is easy to justify because
the eigenvector kµ has eigenvalue 0. This is the consequence of the gauge invariance. A perturbation of
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this operator renders it invertible.

−k2gµν + kµkν −→ −k2gµν +
(
1− 1

ξ

)
kµkν . (16.77)

With inverse

Πµν = −
gµν − (1− ξ)

kµkν
k2

k2
, (16.78)

which is exactly the photon propagator in ξ-gauge. We are going the explain where the perturbation comes
from via path integral. How to justify the perturbation? It can be introduced by adding 1

2ξ (∂µA
µ)2 to the

Lagrangian.

Theorem 16.2. This term doesn’t modify the time order product of gauge invariant operator.

Proof: Consider the function
f(ξ) =

∫
Dπe

−i
∫
d4x 1

2ξ
(2π)2

. (16.79)

For fixed Aµ(x), we perform the change of variables

π(x) → π(x)− 1

2
∂µA

µ , (16.80)

where the last term represents the solution for 2α = ∂µA
µ. This is a shift. The measure will run through

all the possible fields so the measure won’t change. Then

f(ξ) =

∫
Dπe

−i
∫
d4x 1

2ξ
(2π−∂µAµ)2

. (16.81)

It looks like that it depends on Aµ, but the integral doesn’t because Aµ doesn’t appear in the initial
definition of f(ξ). Next, let Ô(x1, . . . , xn) be a gauge invariant product of operator. We consider

〈Ω|T
{

Ô(x1, . . . , xn)
}
|Ω〉 = 1

Z[0]

∫
DA

∏
Dφi

∏
Dφ∗i e

i
∫
d4xL [A,φi,φ

∗
i ]O(x1, . . . , xn) , (16.82)

where φi and φ∗i are both charged fields. Insert the function f(ξ), we have

=
1

Z[0]f(ξ)

∫
DπDA

∏
Dφi

∏
Dφ∗i e

i
∫
d4xL [A,φi,φ

∗
i ]−

1
2ξ

(2π−∂µAµ)2O(x1, . . . , xn) . (16.83)

To decouple π and Aµ, we perform a gauge transformation with gauge parameter π,

Aµ → Aµ + ∂µπ, φi = eiQiπφi . (16.84)

By gauge invariance of L and O, the integral becomes,

〈Ω|T
{

Ô(x1, . . . , xn)
}
|Ω〉 =

1

Z[0]f(ξ)

∫
DπDA

∏
Dφi

∏
Dφ∗i e

i
∫
d4xL [A,φi,φ

∗
i ]−

1
2ξ

(∂µAµ)2O(x1, . . . , xn) .
(16.85)
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Performing the same manipulation for Z[0] yields,

Z[0] =
1

f(ξ)

∫
DπDA

∏
Dφi

∏
Dφ∗i e

i
∫
d4xL [A,φi,φ

∗
i ]−

1
2ξ

(∂µAµ)2
. (16.86)

The factor 1
f(ξ)Dπ cancels and the Lagrangian is modified

L [A,φi, φ
∗
i ] → L [A,φi, φ

∗
i ]−

1

2ξ
(∂µA

µ)2 . (16.87)

16.5.2 The Ward-Takahashi identity

Consider the theory with global symmetry ψ → eiαψ for ψ, which is a Dirac spinor. The propagator

〈Ω|T
{
ψ(x1)ψ̄(x2)

}
|Ω〉 = 1

Z[0]

∫
DψDψ̄DX exp

[
i

∫
d4x

(
ψ̄(i/ψ −m)ψ + Y

)]
ψ(x1)ψ̄(x2) , (16.88)

where DX is the measure part of the other fields which aren’t relate to the Dirac spinor. Y is the Lagrangian
term doesn’t include ψ, ψ̄. Consider field redefinition,

ψ(x) → e−iα(x)ψ

DψDψ̄ → DψDψ̄

ψ̄(i/∂ −m)ψ → ψ̄(i/∂ −m)ψ + ψ̄γµψ∂µα(x)

DX,Y → DX,Y

ψ(x1)ψ̄(x2) → e−iα(x1)+iα(x2)ψ(x1)ψ̄(x2) .

(16.89)

Now expand in α. Because the theory has global symmetry, now the α(x) transformation is local, and the
higher derivative (higher than zero order) part should be zero.

1

Z[0]

∫
DψDψ̄DXeiS exp

[
i

∫
d4xψ̄γµψ∂µα(x)− iα(x1) + iα(x2)

]
ψ(x1)ψ̄(x2) = 0 . (16.90)

With definition jµ = ψ̄γµψ, the part in the exponential function can be rewritten as[
i

∫
d4xψ̄γµψ∂µα(x)− iα(x1) + iα(x2)

]
= −i

∫
d4xα(x)

[
∂µj

µ(x) + δ(4)(x− x1)− δ(4)(x− x2)
]
,

(16.91)
α(x) is arbitrary, then we have the following relation

1

Z[0]

∫
DψDψ̄DXeiS∂µj

µψ(x1)ψ̄(x2) =
1

Z[0]
[−δ(x− x1) + δ(x− x2)]

∫
DψDψ̄DXeiSψ(x1)ψ̄(x2) ,

(16.92)
which is equivalent to

⇔ ∂µ 〈Ω|T
{
jµψ(x1)ψ̄(x2)

}
|Ω〉 = [−δ(x− x1) + δ(x− x2)] 〈Ω|T

{
ψ(x1)ψ̄(x2)

}
|Ω〉 . (16.93)
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Introducing the Fourier transformation,

M µ(p, q1, q2) =

∫
d4x

∫
d4x1

∫
d4x2e

ipx+iq1x1+iq2x2 〈Ω|T
{
jµψ(x1)ψ̄(x2)

}
|Ω〉

M (q1, q2) =

∫
d4x1

∫
d4x2e

iq1x1+iq2x2 〈Ω|T
{
ψ(x1)ψ̄(x2)

}
|Ω〉 .

(16.94)

After Fourier transformation,

⇒
∫
d4x

∫
d4x1

∫
d4x2e

ipx+iq1x1+iq2x2∂µ 〈Ω|T
{
jµψ(x1)ψ̄(x2)

}
|Ω〉 = −ipµM µ(p, q1, q2)

=

∫
d4x

∫
d4x1

∫
d4x2e

ipx+iq1x1+iq2x2 [−δ(x− x1) + δ(x− x2)] 〈Ω|T
{
ψ(x1)ψ̄(x2)

}
|Ω〉

=

∫
d4x1d

4x2

[
−ei(p+q1)x1+iq2x2 + eiq1x1+i(p+q2)x2

]
〈Ω|T

{
ψ(x1)ψ̄(x2)

}
|Ω〉

= −M (p+ q1, q2) + M (q1, p+ q2) .

(16.95)

We get the Ward-Takahashi identity

ipµM
µ(p, q1, q2) = M (q1 + p, q2)− M (q1, q2 + p) . (16.96)

Resuming the argument with the insertion

Oµ1...µn =
∏
i

jµi(xi)
∏
i

ψ(yi)
∏
i

ψ̄(zi) . (16.97)

The corresponding Fourier transformation variables are xi ↔ pi, yi ↔ qi, zi ↔ ri, and define

M µµ1...µk(p, p1, . . . , pk, q1, . . . , ql, r1, . . . , rm) =∫
d4xdµeipx+i

∑
i pixi+i

∑
i qiyi+i

∑
rizi 〈Ω|T {jµ(x)Oµ1...µn} |Ω〉 ,

(16.98)

where dµ =
∏
d4xi

∏
d4yi

∏
d4zi. And

M µ1...µk(p1, . . . , pk, q1, . . . , ql, r1, . . . , rm) =

∫
dµei

∑
i pixi+i

∑
i qiyi+i

∑
rizi 〈Ω|T {Oµ1...µn} |Ω〉 . (16.99)

Those yields the generalized Ward-Takahashi identity

ipµM
µµ1 . . . µk = ipµM

µµ1...µk(p, p1, . . . , pk, q1, . . . , ql, r1, . . . , rm)

=

l∑
i=1

M µ1...µk(p1, . . . , pk, q1, . . . , qi + p, . . . , ql, r1, . . . , rm)−

m∑
i=1

M µ1...µk(p, p1, . . . , pk, q1, . . . , ql, r1, . . . , ri + p, . . . , rm) .

(16.100)

Note that the momentum pi associated to the current insertions are not shifted, as these are invariant
under the action ψ → e−iα(x)ψ.
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16.5.3 Reduction to Ward identity in QED

In the process of reducing the Ward-Takahashi identity to Ward identity, replacing the photon polarization
tensor εµ(p) in our S-matrix element by pµ yields zero. Recall that εµ(p) and εµ(p)+ cpµ should be physi-
cally equivalent required by the gauge invariance. We now prove the Ward identity using Ward-Takahashi
identity now.

Proof:
we will focus on outgoing photons for simplifying the notation. Consider an S-matrix with k+1 such pho-
tons, and an arbitrary number (g) of in and outgoing electrons and positrons. By LSZ reduction formula,
we have

S = εµ(p)

k∏
i=1

εµi(pi)

[
i

∫
d4xeipx2x

(∏
i

∫
d4xie

ipixi2xi

)
× . . .

]
×〈Ω|T {Aµ(x)Aµ1(x1) . . . Aµk(x)X} |Ω〉 ,

(16.101)

whereX includes all the ψ, ψ̄-dependent terms. In Lorenz gauge, the EoM of Aµ(x) are 2Aµ = eψ̄γµψ = jµ.
By Schwinger-Dyson equation

k∏
i=1

2xk2x 〈Ω|T {Aµ(x)Aµ1(x1) . . . Aµk(x)X} |Ω〉

=
k∏
i=1

2xk 〈Ω|T

{
jµ(x)

∏
i

Aµi(xi)X

}
|Ω〉

−i
∑
j=1

δ(4)(x− xj)g
µµj 〈Ω|T {Aµ1(x1) . . .�����:Aµj (xj) . . . A

µk(xk)X} |Ω〉

= 〈Ω|T

{
jµ(x)

∏
i

jµi(xi)X

}
|Ω〉+ contact terms .

(16.102)

The connected S-matrix is

Sconnected = εµ(p)
k∏
i=1

εµi(pi)i

∫
d4xeipx

k∏
i=1

∫
d4xie

ipixi . . . 〈Ω|T

{
jµ(x)

k∏
i=1

jµi(xi)X

}
|Ω〉

= igεµ(p)

k∏
i=1

εµi(pi)

l∏
i=1

(q2i −m2)

l̄∏
i=1

(r2i −m2)M µ1...µk(p, p1, . . . , pk, q1, . . . , ql, r1, . . . , rl̄) .

(16.103)

The red part are the poles in the time order product. By replacing ε→ ipµ, we have

k∏
i=1

εµi(pi)

l∏
i=1

(q2i −m2)

l̄∏
i=1

(r2i −m2)ipµM
µµ1...µk(p, p1, . . . , pk, q1, . . . , ql, r1, . . . , rl̄)

=

l∑
i=1

M µ1...µk(p1, . . . , pk, q1, . . . , qi + p, . . . , ql, r1, . . . , rl)

−
l̄∑

i=1

M µ1...µk(p1, . . . , pk, q1, . . . , ql, r1, . . . , ri + p, . . . , rl) .

(16.104)

124



In each summation, one pole is shifted from its on shell value, which means that the term vanishes when
multiplied by appropriate q2i −m2 or r2i −m2, the right hand side of the equation vanishes so we have the
Ward identity

pµM
µ = 0 . (16.105)

Remark 16.6. The above argument don’t require p2 = 0. Along similar lines, we can argue that replacing
a photon propagator Πµν(k) by kµkν gives zero.

The path integral method shows his power. As a summary, we list several advantages of the path
integral method

• In principle, non-pertubative definition of theory.

• Manifestly Lorentz invariant.

• Quantizing non-Abelian gauge symmetries.

• New perspective on classical (action) vs. quantum (integration measure).
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Chapter 17

Renormalization

Tree diagram becomes disconnected upon cutting any internal lines, this observation follows from the fact
that all momenta are linear combinations of external momenta. However, things are different in loop
diagram. The loop diagrams are generically divergent due to the momentum flow in the internal lines. The
strategy to deal with the divergence is

• parametrize the divergence (e.g. by introducing cut-off), isolated a characteristic finite piece (e.g.
momentum space), this is the regularization scheme.

• absorb it by matching to a (finite) number of measured observables. This is the renormalization
scheme.

– In QED, these observables could be the mass and charge of the electron.

More generally, we choose some observables at a fixed scale Λ and study the change of couplings as
we vary Λ, this leads to the idea of renormalization group flow.

Example 17.1. A typical example is φ3 theory, with the Lagrangian L = −1
2φ(2+m2)φ+ g

3!φ
3, the loop

diagram

Mloop(p) =
p

k

k − p

p
, (17.1)

which is the building block of a bigger diagram. p is not necessarily on-shell. Based on the Feynman rules,

iMloop(p) =
1

2
(ig)2

∫
d4k

(2π)4
i

(k − p)2 −m2 + iε

i

k2 −m2 + iε
∼
∫
k3dk

k4
∼ ln k , (17.2)

where 1
2 is the symmetric factor and the integral is logarithmic divergent. The UV interpretation of this

divergence is that L is not valued at high energies. Here the estimation is rough, k3 comes from the
spherical coordinate Jacobian and k2 estimated as the Euclidean innerproduct.
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17.1 The Feynman parameter trick

Product of propagators integrated over a mutual momentum. We consolidate the momentum dependence
by using the Feynman parameter. Notice that

1

A ·B
=

∫ 1

0
dx

1

[A+ (B −A)x]2
, (17.3)

where x is the Feynman parameter. Applying to the integral, we have

1

A(k)B(k)
=

∫
dx

1

(k2 + . . .)2
. (17.4)

Example 17.2. In the above loop diagram, we have A = (k − p)2 −m2 + iε, B = k2 −m2 + iε,

⇒ A+ (B −A)x = (k − p)2 −m2 +
(
k2 − (k − p)2

)
x+ iε

= k2 − 2pk + p2 −m2 + (2kp− p2)x+ iε

= k2 −−2kp(1− x) + p2(1− x)−m2 + iε

=
(
k2 − p(1− x)

)2 − p2(1− x)2 + p2(1− x)−m2 + iε

shift k−→ k2 + p2(1− x)x−m2 + iε = k2 −∆+ iε ,

(17.5)

where ∆ = −(p2(1− x)x−m2). Then the amplitude

iMloop(p) =
g2

2

∫
d4k

(2π)4

∫ 1

0
dx

1

(k2 −∆+ iε)2
. (17.6)

17.2 Wick rotation

We want to replace k2 by k2E , i.e. by Euclidean product. Consider∫
d4k

(2π)4
1

(k2 −∆+ iε)n
, n > 1 . (17.7)

Expand the denominator,

k2 −∆+ iε =

[
k0 −

(√
~k2 +∆− iε

)][
k0 +

(√
~k2 +∆− iε

)]
. (17.8)

Remark 17.1. Here we redefine the infinitesimal parameter ε and take the infinitesimal advantage.

Assume ∆ > 0 for concreteness, The integral contour (x-axis is the k0), is as follows, The integral along
the red contour is zero

∮
C = 0 because it contains no poles. The integral along the arc is also zero because

the function drops off as (k0)−2n, then we have∫ +∞

−∞
dk0

∫
d3k

(2π)4
1

(k2 −∆+ iε)n
=

∫ +i∞

−i∞
dk0

∫
d3k

(2π)4
1

(k2 −∆+ iε)n
. (17.9)
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Figure 17.1: Integral contour

If we set k0 = ik0E (Wick rotation), the integral changes into

i

∫ +∞

−∞
dk0E

∫
d3k

(2π)4
1

(−k2E −∆)n
, (17.10)

where k2E = (k0E)
2 + ~k2.

Example 17.3. If n = 2, the integration is∫
d4k

(2π)4
1

(k2 −∆+ iε)2
= i

∫ +∞

−∞

d4kE
(2π)4

1

(k2E +∆)2
= i

∫
k3dΩ4dk
(2π)4

1

(k2 +∆)2

= i
2π2

(2π)4

∫ ∞

0

1
2k

2dk2

(k2 +∆)2
q2=k2+∆

= i
1

8π2

∫ ∞

∆

1
2(q

2 −∆)dq2

q4

=
i

8π2
lim

c→+∞

[
ln q +

1

2

∆

q2

]q=√
c

q=
√
∆

=
i

8π2
lim

c→+∞

[
1

2
ln c− 1

2
ln∆− 1

2

]
(17.11)

where c is the upper bound and we drop the term ∆
c because c is a large number.

17.3 Hard cut-off and Pauli-Villars regularization

Definition 17.1. Hard cut-off is the cut-off at high energy by introducing upper bound Λ∫ ∞

0
dk →

∫ Λ

0
dk . (17.12)

The advantage of this cut-off is that it is physically intuitive. The disadvantage is that it breaks the
shift symmetry in momentum and clumsy to work with. The idea of Pauli-Villars regularization is to
introduce fictitious (does not occur at in and out states) heavy (not produced in scattering, does not alter
in low energy physics) particle to cancel the divergences, i.e. modifying UV of the theory.
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Example 17.4. For φ3 theory, we introduce a fermionic scalar ψ, which will have a minus sign in loops
diagram. It violated the spin-statistics. Such particles are called ghosts, which cannot appear as external
states. The fermionic scalar couples to φ via φψ2 of mass Λ � m. The amplitude is then∫

d4k

(2π)4
1

(k2 −∆+ iε)2
7→
∫

d4k

(2π)4
1

(k2 −∆+ iε)2
−
∫

d4k

(2π)4
1

(k2 − Λ2 + iε)2
. (17.13)

Graphically speaking,

p

k

k − p

p
7→

p

k

k − p

p
+

p

k

k − p

p
. (17.14)

In the second integral, we replace ∆ = Λ2 − p2x(1− x) by Λ2 because Λ is much larger than p. Based on
the equation (17.11), the result is

i

16π2
lim
c→∞

[
ln c− ln∆− 1− (ln c− lnΛ2 − 1)

]
= − i

16π2
ln

∆

Λ2
. (17.15)

Notice that the infinite part cancels because of the introduction of fictitious particle. Recovering the variable,

iMloop(p) =
g2

2

−i
16π2

∫ 1

0
dx ln

m2 − p2x(1− x)

Λ2

m2∼0
= − ig2

32π2

(∫ 1

0
dx lnx(1− x) + ln

−p2

Λ2

)
=

ig2

32π2

[
−2− ln

−p2

Λ2

] (17.16)

. A few remarks on this result.

• By redefining Λ, we can absorb the constant term, which means that the −2 term is not physical.

• In the logarithm function, the number is minus, this is not reasonable because we use a not good
approximation. But the point of the calculation is to see the disadvantage, we won’t consider it
seriously.

• The dependence ln
(
−p2/Λ

)
on p is not altered by changing Λ as long as this change is p independent,

which means that we decompose the UV and IR divergence.

There are several disadvantages of Pauli-Villars regularization,

• Needs modification at higher loops.

• it is not a gauge invariant regulator, as PV ghost mush have the same Lorentz transformation
properties/charges as particle. It must have large mass, which is incompatible with regularizing
photon.

17.4 Dimensional regularization

This regularization scheme respects the gauge symmetry.
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17.4.1 The idea

In fact, the integral ∫
ddk

(2π)d
1

(k2 −∆+ iε)2
<∞ for d < 4 . (17.17)

It will logarithmically divergent at d = 4. Inspired by this result, we define the real number dimension d,
and evaluate the integral at d = 4− ε, where the ε plays the role 1/Λ. The first thing we need to generalize
is the integral measure ∫

ddk =

∫
Ωd

∫
dkkd−1 , (17.18)

the kd−1 make senses for arbitrary d ∈ R, but the Ωd needs generalized definition. Mathematically we
have (∫ +∞

−∞
dxe−x

2

)d
=

∫
dΩd

∫
drrd−1e−r

2
= Ωd

1

2
Γ

(
d

2

)
, (17.19)

where the gamma function is defined as Γ(z) =
∫∞
0 dxxz−1e−x for Rez > 0. We know that the result for

the LHS is (
√
π)d. Γ(n) = (n− 1)! for n ∈ N and the negative integers and zero is simple poles of gamma

function upon analytically continuation. Thus, the Ωd for d ∈ R is

Ωd =
2πd/2

Γ
(
d
2

) . (17.20)

17.4.2 A useful integral identity∫ ∞

0
dk

ka

(k2 +∆)b
= ∆

a+1
2

−bΓ(
a+1
2 )Γ

(
b− a+1

2

)
2Γ(b)

, (17.21)

where the equal holds in the mutual domain of convergence. Recall the integral we had before and keep
the a, b,∫

ddk

(2π)d
k2a

(k2 −∆)b
= i

∫
ddkE
(2π)d

(−k2E)a

(k2 +∆)b
= i(−1)a−b

2πd/2

(2π)d
1

∆b−a−d/2
Γ
(
a+ d

2

)
Γ
(
b− a− d

2

)
2Γ (b) Γ

(
d
2

) . (17.22)

17.4.3 The coupling constant dimension in dimensional regularization

To obtain logs only of dimensionless quantities, we need to keep track of the mass dimension of our coupling
constants. Determine mass dimension of field by containing with kinetic terms and retaining [S] = 0.

[ψ] =
d− 1

2
, [Aµ] =

d− 2

2
, d = [eψ̄ /Aψ] = [e] + (d− 1) +

d

2
− 1 ⇒ [e] =

4− d

2
. (17.23)

In d = 4, the charge is dimensionless. We want to keep e dimensionless in d dimension, we introduce a
scalar µ such that

e→ eµ
4−d
2 . (17.24)

We replace the coupling constant which e appears in loops by eµ
4−d
2 to avoid the logs of dimensionful

quantities. And we maintain e everywhere. The final results shouldn’t depend on µ.
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17.4.4 Logarithmically divergent integrals in dimension regulator

∫
ddk

(2π)d
e2µ4−d

(k2 −∆+ iε)

a=0, b=2
= µ4−de2i(−1)2

1

(4π)d/2
1

∆2−d/2
Γ
(
d
2

)
Γ
(
2− d

2

)
Γ (2) Γ

(
d
2

) , (17.25)

which diverges at d = 4. Set d = 4− ε where ε is small, using the expansion of Gamma function

Γ (ε) =
1

ε
− γE + O(ε) , (17.26)

where γE is the Euler-Mascheroni constant. This gives

µ4−d
ie2

(4π)d/2
Γ

(
4− d

2

)(
1

∆

)2− d
2

, (17.27)

using the expansion (4π)d/2 = (4π)2−ε/2 = (4π)2(4π)−ε/2 ≈ (4π)2(1 + ε
2 ln 4π), µ

ε ≈ 1 + ε lnµ, Γ
(
ε
2

)
≈

2
ε − γE , ∆−ε/2 ≈ 1− ε

2 ln∆, we have

⇒=
ie2

(4π)2

[
2

ε
+ (−γE + lnµ2 + ln 4π − ln∆) + O(ε)

]
=

ie2

(4π)2

[
2

ε
+ ln

(
4πe−γEµ2

)
+ O(ε)

]
=

ie2

(4π)2

[
2

ε
+ ln µ̃2 + O(ε)

]
,

(17.28)

where µ̃2 =
(
4πe−γEµ2

)
.

17.5 Renormalizing at the level of the S -matrix

Example 17.5. Vacuum polarization. In QED, a typical loop diagram is

iΠµν2 =
p

k

k − p

p

= −(−ie)2
∫

d4k

(2π)4
i

(k − p)2 −m2 + iε

i

k2 −m2 + iε
Tr
[
γµ(/k − /p+m)γν(/k +m)

]
= i
[
∆1(p

2,m2)p2gµν +∆2(p
2,m2)pµpν

]
,

(17.29)

with external legs amputated (and not replaced by polarization tensors). The subscript 2 means it is order
2 in coupling. ∆1 and ∆2 are called the form factors, which are functions of momenta (and masses) left
to determine once the kinetics has been taken into account (for non pertubative processes, e.g. in QCD,
determined via measurement). Πµν2 contributes to the dressed photon propagator

〈Ω|T {Aµ(x)Aν(y)} |Ω〉 =
∫

d4p

(2π)4
eip(x−y)iGµν(p) . (17.30)

131



with

iGµν(p) = + + . . .

=
−igµν
p2 + iε

+
−igµρ

p2 + iε
i(Π2)ρσ

−igσν

p2 + iε
+ . . . ,

(17.31)

where we have already chosen the Feynman gauge. Based on the expression of Πµν2 , we have

iGµν(p) = −i
(1 + ∆1)g

µν +∆2
pµpν

p2

p2 + iε
. (17.32)

Recall by Ward identity, any S-matrix in which Gµν will be inserted will be dependent of ∆2-term. As
pµM µ = 0, we can drop the term proportional to pµpν . Note further, by considering the γ → γ S-matrix,
the Ward identity will give

pµΠ
µν
2 = 0 ⇒ pµ

[
∆1(p

2,m2)p2gµν +∆2(p
2,m2)pµpν

] !
= 0

⇒ ∆1p
2pν +∆2p

2pν
!
= 0 ⇒ ∆1 = −∆2 .

(17.33)

We can check it by explicit calculation.

17.5.1 Regularizing the divergence

Following the route about calculating the integral (17.29) (exercise)

• evaluate the trace,

• introducing Feynman parameters,

• dropped term proportional to pµpν ,

• performing dimensional regularization,

we have
iΠµν2 (p2) = i(−p2gµν)e2Π2(p

2) + pµpν-terms , (17.34)

where
Π2(p

2) =
1

2π2

∫ 1

0
dxx(1− x)

[
2

ε
+ ln

µ̃2

m2 − p2x(1− x)

]
(17.35)

with µ̃2 = 4πe−γEµ.

17.5.2 Renormalizing vacuum polarization by computing 2-2 scattering to experiment

The dressed propagator

iGµν = −i1− e2Π2(p
2)

p2 + iε
gµν + pµpν-terms + O(e4) , (17.36)
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arises in e−e− → e−e− scattering,

iM =

p1 p3

p4p2

e− e−

e−e−

+

e−

e− e−

e−

p1
p4

p2

p3

+ +

= (−ie)2ū(p3)γµu(p1)ū(p4)γνu(p2)iGµν − (p3 ↔ p4) ,

(17.37)

where the minus sign comes from exchanging the fermion lines. Note that we can check explicitly that
pµpν-term does not contribute. We claim that the loop correction can be interpreted as correction to the
classical potential. To see this, take non-relativistic limit m� 1, the polarization tensor is

u(p) =

(√
p · σξ

√
p · σ̄ξ

)
with σ = (1, ~σ), σ̄ = (1,−~σ), σ =

{(
1

0

)
,

(
0

1

)}
.

⇒ u(p) =
√
p0

(√
1 − ~p · ~σ/p0ξ√
1 + ~p · ~σ/p0ξ

)
,

(17.38)

where p0 =
√
m2 + ~p2. Take the non-relativistic limit,

⇒ ū(p3)γ
µu(p1) =


µ = 0 u†(p3)u(p1) ≈ m

(
ξ†3 ξ†3

)ξ1
ξ1

 = 2mξ†3ξ1

µ = i u†(p3)γ
0γiu(p1) = u†(p3)

−σi 0

0 σi

u(p1) ≈ 0 (leading order) .

(17.39)

⇒ iMt = −e2
[
−i1− e2Π2(p

2)

p2
g00
]
4m2ξ†3ξ1ξ

†
4ξ2 = −e2

[
−i1− e2Π2(p

2)

p2
g00
]
4m2δσ1σ3δξ2ξ4 , (17.40)

and p = p3 − p1, as p0i ∼ m, we have p2 = −~p2. Let’s compare to non-relativistic Bonn approximation

SBonn
βα δ(β − α)− 2πiδ(Eα − Eβ) 〈φβ|V |φα〉 , (17.41)

where Tβα = 〈φβ|V |φα〉, V is the interacting Hamiltonian H ′ = H + V and |φα〉 is the free state. Applied
to 2 → 2 scattering, in local, spin-independent central potential,

T (φp1,σ1 + φp2,σ2 → φp3,σ3 + φp4,σ4) = A 〈Φ3,Φ4|V (|~̂x− ~̂y|) |Φ1,Φ2〉A . (17.42)

A denotes the anti-symmetrization. Expanding the integral,

=

∫
d3~x1d

3~x2d
3~x3d

3~x4 〈~p3, ~p4|~x3, ~x4〉 〈 ~x3, ~x4|V (|~x1 − ~x2|) |~x1, ~x2〉 〈~x1, ~x2|~p1, ~p2〉 δσ1σ2δσ2σ4

−(p3, σ3 ↔ p4, σ4) ,

(17.43)
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the last term means that exchanging the position of the quantity relates to the particle 3 and 4. Notice
that

〈~p3, ~p4|~x3, ~x4〉 =
(

1

(2π)3/2

)2

e−i(~p3·~x3+~p4·~x4) , (17.44)

we have
=

1

(2π)6

∫
d3x1d

3x2e
i(~p1−~p3)·~x1+i(~p2−~p4)·~x2V (|~x1 − ~x2|) δσ1σ3δσ2δ4 − (3 ↔ 4)

~x1=~x2+~r=
1

(2π)6
(2π)3

∫
d3rV (|~r|)ei(~p1−~p3)·~rδσ1σ3δσ2σ4 − (3 ↔ 4) .

(17.45)

With V (|~r|) = e2

|~r| , Ṽ (~p) = 4π e2

|~p|2 , upon matching normalization

Ṽ (p2) =
e2

p2
(
1− e2Π2(p

2) + . . .
)
, (17.46)

QFT calculation indeed reproduces classical Coulomb potential. The experiment will measure Ṽ (p2) at
some reference scale p0, it is no doubt that Ṽ (p20) is finite, but why Π2(p

2
0) is infinite? Reconsider the

identification of e in Lagrangian with the measured electric charge of electron. We define the renormalized
charge eR at reference scale p0.

Ṽ (p20) =
e2R
p20
, (17.47)

which is called the renormalization condition. Combine with the relation (17.46), we have

e2R = p20Ṽ (p20) = e2 − e4Π2(p
2
0) + . . . . (17.48)

The left hand side should be finite. Then comes to the renormalization step: replace e-dependence (infinite,
non-measurable) by eR-dependence (finite, measurable). Invert the equation (17.48) as formal power series,
we have

e2 = e2R + e2RΠ2(p
2
0) + . . . (17.49)

and substitute with p0 as arbitrary momentum,

p2Ṽ (p2) = e2 − e4Π2(p
2) + . . . = e2R + e4RΠ2(p

2
0)− e4RΠ2(p

2) + O(e6R) . (17.50)

Let us choose p0 → 0 (this corresponds to measuring charge at ∞), and based on the equation (17.35), we
have

⇒ Π2(p
2)−Π2(0) = − 1

2π2

∫ 1

0
x(1− x) ln

(
1− p2

m2
x(1− x)

)
, (17.51)

where the ε and µ̃ dependence cancels. It leads to the momentum dependent correction to potential.

17.5.3 Small momentum approximation and the Lamb shift

For |p2| � m2, we truncate the logarithm in at first order,

Π2(p
2)−Π2(0) = − 1

2π2

∫ 1

0
x(1− x)

[
− p2

m2
x(1− x)

]
=

p2

60π2m2
, (17.52)

134



⇒ Ṽ (p2) =
e2R
p2

−
e4R

60π2m2
+ . . . . (17.53)

Inverse Fourier transform the expression we get the correction of the potential,

V (r) =
e2R
4πr

−
e4R

60π2m2
δ(r) + . . . , (17.54)

where the second term (first order correction) is called the Uehiling term. The correction has support at
origin. Hence, it affects the s (l = 0) orbit but not the p (l = 1) orbit. It destroys the degeneracy between
2s and 2p level, as measured by Lamb. This is a contribution called the Lamb shift. The full treatment
requires external field method.

17.5.4 The running coupling, screening, and the Landau pole

Consider Q2 = −p2 � m (Again, p is not on-shell), this gives

Ṽ (Q2) = −
e2R
Q2

−
e4R
Q2

1

2π2

∫ 1

0
dxx(1− x) ln

[
1 +

Q2

m2
x(1− x)

]
. (17.55)

The logarithm

ln

[
1 +

Q2

m2
x(1− x)

]
∼ ln

[
Q2

m2
x(1− x)

]
∼ ln

Q2

m2
+ lnx(1− x) ∼ ln

Q2

m2
, (17.56)

then the integral reduces to

≈ −
e2R
Q2

(
1 +

e2R
12π2

ln
Q2

m2
+ . . .

)
= −

e2ff
Q2

,

(17.57)

with e2ff = e2R

(
1 +

e2R
12π2 ln

Q2

m2 + . . .
)

. The effective charge is Q-dependent, which is called the running
coupling. There are two limits needs attention

• Q2 → m2, which is equivalent to increasing the distance, the effective charge decreases. The inter-
pretation is that the creation of virtual electron-positrons pairs that screen the charge.

• Q2 is large. The effective charge diverges because of the term e2R ln Q2

m2 . Now we introduce Bettes
estimate. First, each loops will have

iGµν = + + + . . . (17.58)

Notice that each unit

=
[
−ip2gρσe2R

(
Π2(p

2)−Π2(0)
)](

− ig
σν

p2

)
, (17.59)
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with Π2(p
2)−Π2(0) = − 1

12π2 ln
Q2

m2 , we have[
ip2gρσe

2
R

1

12π2
ln
Q2

m2

](
− ig

σν

p2

)
= δνρ

e2R
12π2

ln
Q2

m2
. (17.60)

Then the expression (17.58) generates

iGµν =

(
− ig

µν

p2

)
+

(
− ig

µν

p2

)
e2R
12π2

ln
Q2

m2
+

(
− ig

µν

p2

)(
e2R
12π2

ln
Q2

m2

)2

+ . . . (17.61)

⇒ e2ff (Q
2) = e2R

[
1 +

e2R
12π2

ln
Q2

m2
+

(
e2R
12π2

ln
Q2

m2

)2

+ . . .

]

=
e2R

1− e2R
12π2 ln

Q2

m2

+ . . . ,

(17.62)

where the . . . represents some diagrams are not included by this geometric summation (e.g. ).

The result has pole at ln Q2

m2 = 12π2

e2R
. This breaks down the perturbation theory of φ3, called the Lan-

dau pole.

17.6 Renormalizing Green’s function

Rather than studying observables (S-matrix elements) directly, we will study the building blocks, which
are the n-point functions, organized by number n of insertions.

One point function

Because the vacuum is the translational invariant, the one point function is

〈Ω|Aµ(x) |Ω〉 = 〈Ω| eipxAµ(x)e−ipx |Ω〉 = 〈Ω|Aµ(x) |Ω〉 . (17.63)

The VEVs are constant, set by boundary conditions on your theory. As for the Lorentz transformation,

〈Ω|U(Λ)Aµ(0)U−1(Λ) |Ω〉 = Λµν 〈Ω|Aν(0) |Ω〉 , (17.64)

by Lorentz invariant of the vacuum U(Λ) |Ω〉 = |Ω〉, the left hand side is always 〈Ω|Aµ(0) |Ω〉, thus
〈Ω|Aµ(0) |Ω〉 = Λµν 〈Ω|Aν(0) |Ω〉 for all Λ, the only possibility is that 〈Ω|Aµ(0) |Ω〉 ≡ 0. Only scalar fields
can have non-vanishing VEVs without breaking Lorentz invariance. This conclusion will play an important
role in the Standard model and the context of spontaneous symmetry breaking, but not in QED.

Two point functions

In QED, there are four types of the two point functions,

• 〈Ω|T {Aµ(x)Aν(y)} |Ω〉 will leads to the vacuum polarization, which we discussed above.
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• 〈Ω|Aµ(x)ψ(y) |Ω〉 = 〈Ω|T
{
Aµψ̄(y)

}
|Ω〉 = 0 as no possible Feynman diagram.

• 〈Ω|ψ(x)ψ̄(y) |Ω〉 will leads to the problem called the electron self energy.

All other combination of two spinors vanish, by same argument as above.

〈Ω|T
{
ψ(x)ψ̄(y)

}
|Ω〉 =

∫
d4p

(2π)4
e−ip(x−y)iG(/p) . (17.65)

Remark 17.2. G = G(p2, /p). Because p2 = /p/p, so we just write G(/p).

Consider the Feynman diagram up to order 2, and define iG0(/p) =
i

/p−m ,

iG(/p) =

p

+

p

p− q

q

p

= iG0(/p) + iG0(/p)(iΣ2(/p))iG0(/p) .

(17.66)

where the subscript 2 denote that it is the second order contribution, In Feynman gauge, we have

iΣ2(/p) = (−ie)2
∫

d4k

(2π)4
γµ

i(/k +m)

k2 −m2 + iε
γν

−igµν
(p− k)2 + iε

. (17.67)

Following the same steps of estimation, the UV divergent part of Σ2 is

[iΣ2(/p)]UV divergent =
α

π

/p− 4m

2ε
, α =

e2

4π
. (17.68)

Remark 17.3. Unlike Π2, [Σ2]divergent has two terms with different momentum dependence, which means
that we will require two renormalization conditions.

17.6.1 Mass and field renormalization

Recall Π2 divergence was absorbed in replacing charge e with renormalized charge eR. We absorb [Σ2]divergent

by replacing
m0 → mR , ψ0 → ψR . (17.69)

We set
m0 = ZmmR = (1 + δm)mR , δm = O(e2R)

ψ0(x) =
√
Z2ψ

R(x) =
√
1 + δ2ψ

R(x) , δ2 = O(e2R) .
(17.70)

δm, δ2 are formal power series in eR, beginning at order e2R. We quantify the variable by using LSZ formula.

〈Ω|T
{
ψR(x)ψ̄R(y)

}
|Ω〉 = 1

Z2
〈Ω|T

{
ψ0(x)ψ̄0(y)

}
|Ω〉 , (17.71)

at tree level

1

Z2

i

/p−m0
=

1

1 + δ2

i

/p−mR − δmmR
= (1− δ2)

i

(/p−mR)
(
1− δmmR

/p−mR

) + O(e4R) , (17.72)
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where we expand the denominator (1 + δ2)
−1 = 1− δ2 + O(e4R). Using the same trick again, the equation

becomes
1

Z2

i

/p−m0
= (1− δ2)

i

/p−mR

/p−mR + δmmR

/p−mR
+ O(e4R)

=
i

/p−mR
+

i

/p−mR

[
−i(−δ2/p+ δ2mR + δmmR)

] i

/p−mR
+ O(e4R)

=
i

/p−mR
+

i

/p−mR

[
i(δ2/p− (δ2 + δm)mR)

] i

/p−mR
+ O(e4R) ,

(17.73)

which the right structure to absorb the divergence in Σ2. Substitute the above result (the modification to
iG0(/p)) into the equation (17.66) and collect the result up to the order e2R,

iGR(/p) =
i

/p−mR
+

i

/p−mR

[
i(δ2/p− (δ2 + δm)mR) + iΣ2(/p)

] i

/p−mR
+ O(e4R) . (17.74)

The divergent part is [iΣ2(/p)]UV divergent =
α
π
/p−4m

2ε , where we only keep the lowest order term. Replacing

m0 by mR in the graph
p

p− q

q

p

modifies the result at order e4R. We can absorb the divergence

e.g. by defining
δ2 = − α

4π

2

ε
,

δ2 + δm = −α
π

2

ε

⇒ δm = −3α

4π

2

ε
.

(17.75)

Here α has e-dependence. Since we only consider up to the order e2R, we can replace e in the lowest order
α =

e2R
4π .

17.6.2 Subtraction scheme MS, MS , on-shell subtraction

Modifying δ2, δm by any finite contribution still absorbs the infinities, which give rise to equally admissible
renormalization scheme.

• Minimal Subtraction (MS): define δ with no finite part as equation (17.75).

• Modified Minimal Subtraction (MS), define δ that subtracts the part 2
ε + ln 4π − γE .

• On-shell subtraction.

We introduce the on-shell subtraction scheme in detail. We want to identify mR with the physical mass,
defined as the location of the pole of the dressed propagator. As for vacuum polarization, consider

G(/p) =

p

+

p

p− q

q

p

+

p

p− q

q

p

p− k

q

p

,
(17.76)

138



which is the geometric sum, but does not encompass, e.g. . To remedy this, we

define 1-particle irreducible (1 PI) diagrams:

Definition 17.2. 1-particle irreducible diagrams (1PI): diagrams can not be divided into two non-trivial
diagrams by cutting a single line.

Example 17.6. For example, the diagram is 1PI.

The diagram
p

p− q

q

p

p− k

q

p

is not 1PI.

Then we define
iΣ(/p) =

∑
1PI diagram

1PI :=

= + + . . .

(17.77)

where the external legs are amputated. Then

iG(/p) = + + + . . .

=
i

/p−m
+

i

/p−m
iΣ

i

/p−m
+

i

/p−m
iΣ

i

/p−m
iΣ

i

/p−m
+ . . .

=
i

/p−m

∞∑
n=0

(
iΣ

i

/p−m

)n
=

i

/p−m

1

1− iΣ i
/p−m

=
i

/p−m+Σ(/p)
.

(17.78)

The quantum corrections shift position of pole of complete electron propagator away from free-value, which
leads to the modification of LSZ as we required. The complete propagator for renormalized fields is then

iGR(/p) =
1

1 + δ2

i

/p−m0 +Σ(/p)
=

i

/p−mR +ΣR(/p)
, (17.79)

with ΣR(/p) defined by the above equation. Expand to the order e2R, we have

ΣR(/p) = Σ2(/p) + δ2/p− (δm + δ2)mR + O(e4R) . (17.80)

The position of the pole of the complete propagator is a good definition of physical mass (pole mass). The
renormalized propagator should have a single pole at /p = mP with residue i.

Remark 17.4. This pole mass is physical and independent of any subtraction scheme.
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From Eq. (17.79), for GR(/p) to have a pole at /p = mP , it must satisfy

mP −mR +ΣR(mP ) = 0 . (17.81)

This is the condition defines the pole mass, which is independent of the choice of the subtraction scheme.
The Renormalization conditions in on-shell renormalization scheme are

• mP −mR = 0, i.e. choose renormalized mass equal to physical mass.

• fix residue at mP to be i (convenient for LSZ).

The first step gives
ΣR(mP ) = Σ2(mP ) + δ2mP − (δm + δ2)mP |mR=mP

+ . . .

= Σ2(mP )− δmmP
!
= 0 .

(17.82)

The second step gives
i = lim

/p→mP

(/p−mP )
i

/p−mR +ΣR(/p)
, (17.83)

expanding ΣR(/p) around mP ,

ΣR(/p) = ΣR(mP ) + (/p−mP )
d

d/p
ΣR(/p)

∣∣∣∣
/p=mP

+ . . .

= mR −mP + (/p−mP )
d

d/p
ΣR(/p)

∣∣∣∣
/p=mP

+ . . . .

(17.84)

Then the residue becomes

lim
/p→mP

i

1 + d
d/p
ΣR(/p)

∣∣∣
/p=mP

= i ⇒ d

d/p
ΣR(/p)

∣∣∣∣
/p=mP

!
= 0 . (17.85)

We will show that
δm =

α

2π

(
−2

ε
− 3

2
ln

µ̃2

m2
P

− 2

)
δ2 = − α

2π

(
1

ε
+

1

2
ln

µ̃

m2
P

+ 2 + ln
m2
γ

m2
P

)
,

(17.86)

where mγ is the IR regulator. To justify manipulation, we set

ΣR(/p) = α/p+ β

⇒ i

/p−mR +ΣR(/p)
=

i

(α+ 1)/p−mR + β
=

i
[
(α+ 1)/p+mR − β

]
(α+ 1)2p2 − (mR − β)2

,
(17.87)

where the pole is

p2 =
(mR − β)2

(α+ 1)2
= m2

P . (17.88)
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Also, from the equation (17.81), we have

αmP + β = ΣR(mR) = mR −mP ⇒ mP =
mR − β

α+ 1
. (17.89)

17.6.3 LSZ and the shift of the pole of the complete electron propagator

LSZ formula tells us that the residue of the appropriate Green’s function at p2ext = m2, where m is the
physical mass, entered via dispersion relation p2 = m2. We need to replace m0 by mP in our considerations
and multiply the time-ordered product by limp2→m2

P
(−p2 +m2

P ) to amputates the outermost propagator,
i.e. all diagrams

+ + . . . (17.90)

just serve to shift the poles from m0 to mP in perturbation theory. LSZ prescription: To obtain S-
matrix from appropriate n-point function, we need to amputate complete external propagator, replaced by
polarization tensor.

17.7 Renormalized perturbation theory

We have been computing in two steps,

• Compute the bare Green’s function.

• Rescale to obtain Green’s function of renormalized fields. Re-express in terms of renomralized cou-
plings and masses.

Combine these two steps by expressing Lagrangian directly in terms of renormalized quantities,

L = −1

4
(F 0)µν(F

0)µν + ψ̄0
(
i/∂ − e0 /A

0 −m0

)
ψ0 , (17.91)
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where the subscript or superscript 0 means the bare quantity. We define

ψ0 =
√
Z2ψ

R

A0
µ =

√
Z3A

R
µ

m0 = ZmmR

e0 = ZeeR

Z1 = Z2

√
Z3Ze

Zi = 1 + δi , δi = O(e2R) for i = 1, 2, 3.

(17.92)

The Lagrangian with renormalized quantity is

L = −1

4
Z3(F

R)µν(F
R)µν + Z2ψ̄

R
(
i/∂ − Ze

√
Z3eR /A

R − ZmmR

)
ψR

Zi=1+δi= −1

4
(FR)µν(F

R)µν + ψ̄R
(
i/∂ − eR /A

R −mR

)
ψR − 1

4
δ3(F

R)µν(F
R)µν + iδ2ψ̄

R/∂ψR

−(δm + δ2 + δmδ2)ψ̄
RψR − δ1eRψ̄R − δ1eRψ̄

R /A
R
ψR .

(17.93)

We can absorb δmδ2 in the redefinition of δm to δ′m such that δ′m + δ2 = δm + δ2 + δmδ2. In the following
discussion δm means this new definition.

17.7.1 Feynman rules

Based on the new Lagrangian, we can read the Feynman rules. The same as previous Lagrangian, but
with 3 new vertices.

• The first new term is the ψ̄RψR,

= i(/pδ2 − (δm + δ2)mR) , (17.94)

where we substitute /∂ with −i//p when momentum is aligned with particle flow direction.

• The “free” term of the photon, comes from δ3(F
R
µν)(F

R)µν ,

= −iδ3
(
p2gµν − pµpν

)
. (17.95)

• The field-photon interaction comes from the term ψ̄R /A
R
ψR,

= −iδ1eRγµ , (17.96)

where δ1eR ∼ e3R.

Remark 17.5. Perturbation theory is now organized in terms of finite coupling constant eR, more appealing
(though equivalent) to having e0 appear in intermediate step.

The δi (and the diagrams they generate) are called the counterterms, which is
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• infinite at each order in e2R. (e.g. function of 1
ε in dimension regularization).

• coefficient of e2nR chosen to cancel infinities at given loop order.

17.7.2 Electron self-energy in renormalized perturbation theory

Recall
〈Ω|T

{
ψ(x)ψ̄(y)

}
|Ω〉 = i

∫
d4p

(2π)4
e−ip(x−y)G(/p) , (17.97)

where ψ, ψ̄ is the renormalized field and G(/p) is formally called GR. Based on the discussion,

iG(/p) = + + + O(e4R)

=
i

/p−mR
+

i

/p−mR
iΣ2(/p)

i

/p−mR
+

i

/p−mR
i
[
/pδ2 − (δ2 + δm)mR

] i

/p−mR
+ O(e4R) ,

(17.98)

where Σ2(/p) include e0 and we use eR to replace it. We reproduce the previous result for ΣR.

17.7.3 Photon self-energy (vacuum polarization) in renormalized perturbation theory

The two point function

〈Ω|T {Aµ(x)Aν(y)} |Ω〉 =
∫

d4p

(2π)4
eip(x−y)iGµν(p) . (17.99)

iGµν(p) = + + + O(e4R) . (17.100)

With

iGµνtree = −i
gµν − (1− ξ)p

µpν

p2

p2 − iε
, (17.101)

we have

iGµν = iGµνtree + iGµρtree
[
−i(p2gρσ − pρpσ)e

2
RΠ2(p

2)
]
iGσνtree + iGµρtree

[
−iδ3(p2gρσ − pρpσ)

]
iGσνtree + O(e4R)

= iGµνtree + iGµρtree

[
−i(p2gρσ −

pρpσ
p2

)

]
iGσνtreep

2
(
e2RΠ2(p

2) + δ3
)
+ O(e4R) .

(17.102)
The Π2(p

2) contributes to the infinite part 1
12π2

2
ε . The divergence can be absorbed by δ3.

Remark 17.6. The product of tensors can be simplified if we use Lorenz gauge ξ = 0. The key point here
is that the nominator of such Gµνtree is a projector,(

gµρ − pµpρ

p2

)(
g ν
ρ − pρp

ν

p2

)
= gµν − pµpν

p2
. (17.103)

Thus, in Lorenz gauge,

iGµν = i

(
gµν − pµpν

p2

)
1

p2
[
1 + (−i)2

(
e2RΠ2(p

2) + δ3
)
+ O(e4R)

]
. (17.104)
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To define the on-shell renormalization scheme, we need to repeat the process as in the electron self-energy
part. The 1PI diagram is

iΣ(/p) = =
∑

1PI diagrams

= + + . . .

= −i(p2gµν − pµpν)Π(p2) ,

(17.105)

where Π(p2) = e2RΠ2(p
2)+δ3+ . . . is the form factor. And the prefactor (p2gµν−pµpν) directly comes from

the Ward identity since pµ(p2gµν − pµpν) = 0. Note that Π(p2) does not exhibit a pole at p2 = 0, such

poles arise from propagators, carrying the momentum p, e.g. has a internal

photon propagator, gives 1
p2

, but no such a propagator appears in 1PI. This gives

iGµν = + + + . . .

= −i
gµν − pµpν

p2

p2
+ (−i)

gµν − pµpν

p2

p2
(−i)2Π(p2) + (−i)

gµν − pµpν

p2

p2
[Π(p2)]2 + . . .

= −i
gµν − pµpν

p2

p2
1

1 + Π(p2)
.

(17.106)

Because of the Ward identity, the position of the pole of the complete propagator is not shifted compared
to the free propagator. It lies at p2 = 0, photon remains massless to all orders in perturbation theory. The
renormalization condition to be imposed in a on-shell renormalization scheme is to fix residue of complete
propagator to be equal to that of free propagator

Π(p2)|p2=0 = 0 . (17.107)

Recall that
Π2(p

2) =
1

2π2

∫ 1

0
dx(1− x)

[
2

ε
+ ln

µ̃2

m2
R − p2x(1− x)

]
, (17.108)

where we substitute m0 with mR since we only consider to the order e2R. And

Π(p2) = e2RΠ2(p
2) + δ3 + . . . (17.109)

⇒ δ3 = −e2RΠ2(0) = −e2R
1

12π2

(
2

ε
+ ln

µ̃2

m2
R

)
, (17.110)

which is the result got via the on-shell scheme. Then

Π(p2) =
e2R
2π2

∫ 1

0
dxx(1− x) ln

m2
R

m2
R − p2x(1− x)

, (17.111)

• Π(p2) is finite (to this order).

• In on-shell scheme, mR = mP , the result is µ̃ independent.
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Renormalizing two point functions has fixed δ2, δm, δ3, the only counterterm is δ1 from Z1 = Z2

√
Z3Ze.

17.7.4 Vertex operation

A prior non-vanishing 3 point functions,

〈Ω|T
{
ψ(x1)ψ̄(x2)A

µ(x3)
}
|Ω〉 , (17.112)

〈Ω|T {Aµ(x1)Aν(x2)Aρ(x3)} |Ω〉 . (17.113)

Remark 17.7. Related to the equation (17.113), by Furry theorem, diagrams with only external photon
lines vanish if the number of these lines is odd.
Proof: QED is invariant under C, which is the charge conjugation. By

CAµ(x)C−1 = −Aµ(x) , (17.114)

〈Ω|T {Aµ1(x1) . . . Aµn(xn)} |Ω〉 = 〈Ω|CT Aµ1(x1) . . . A
µn(xn)C

−1 |Ω〉

= (−1)n 〈Ω|T {Aµ1(x1) . . . Aµn(xn)} |Ω〉 .
(17.115)

We can check that using Feynman diagram:

+ = 0 . (17.116)

To address equation (17.112), we define Γµ via

ū(q2) [−ieRΓµ(p)]u(q1) =
p

q1

q2 , (17.117)

where the blob part means the 1PI diagrams. q1, q2 are on-shell and the external photon amputated.
Placing qi on-shell and sandwiching between ū(q2) and u(q1) allows, after some algebra and by involving
Ward identity, (and of course, Lorentz invariance), to parametrize the Γµ as

Γµ = F1

(
p2

m2

)
γµ +

iσµν

2m
pνF2

(
p2

m2

)
, (17.118)
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where σµν = i
2 [σ

µ, σν ], F1 and F2 are form factors.

−ieRΓµ(p2) = + + (−ieRδ1γµ) + . . . . (17.119)

δ1 occurs in appropriate expression to absorb the divergence of F1. F2 is finite at this order. The on-shell
renormalization scheme requires Γµ(0) = γµ. This implies that eR coincides with measured electric charge
via 2 to 2 scattering. The full diagram,

p2→0−→ −e2Rū(q2)γµu(q1)

(
−i
gµν − pµpν

p2

p2

)
ū(k2)γ

νu(k1) , (17.120)

where the blob vertex means the 1PI diagram, the red propagator emphasises that it is the complete
propagator and p2 → 0 corresponds to the large distance limit. Performing the calculation (based on the
Γµ(0) = γµ), we find δ1 = δ2. This equation holds in any gauge invariant normalization scheme.

Summary of on-shell renormalization conditions

• Impose mR = m leads to Σ(mP ) = 0.

• Impose residue of complete fermion propagator equal i leads to Σ′(mP ) = 0.

• Impose equality of residue of complete propagator and free propagator leads to Π(0) = 0.

• Impose eR = eP be measured by 2-2 scattering leads to Γµ(0) = γµ.

17.7.5 Z1 = Z2 : a consequence of gauge invariance

Recall the Lagrangian

L = −1

4
Z3FµνF

µν + iZ2ψ̄/∂ψ − eRZ1ψ̄ /Aψ − Z2ZmmRψ̄ψ

= −1

4
Z3FµνF

µν + Z2ψ̄(i/∂ − eR
Z1

Z2

/A)ψ − Z2ZmmRψ̄ψ ,
(17.121)

where all the quantities are renormalized quantities. For gauge symmetry

ψ → e−iα(x)ψ

Aµ → Aµ +
1

eR
∂µα ,

(17.122)
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to survive in the quantum correction, we must have Z1 = Z2.

Remark 17.8. The dependence on eR can be absorbed into the gauge field Aµ,

−1

4
FµνF

µν → − 1

4e2R
FµνF

µν

eRψ̄ /Aψ → ψ̄ /Aψ(
Aµ → Aµ +

1

eR
∂µα

)
7→ (Aµ → Aµ + ∂µα)

(17.123)

Remark 17.9. From Z1 = Z2, we immediately have
√
Z3Ze = 1,

√
Z3 = 1

Ze
. This is why we could

renormalize photon self energy via field δ3 or via charge δe renormalization. These two ways are equivalent.

In particular, charge renormalization depends only on the photon, and charge ratios that are preserved
by quantum corrections. However, gauge invariance is obscured by choice of renormalization scheme. A
more formal proof is to prove via Ward-Takahashi identity.

17.8 Renormalization scheme, scalar, and renormalization group equa-
tions

What happen to choosing a scale at which we match to experiment?

• In on-shell scheme, mP and p2 → 0 are the scales underlying this scheme. The n-point function is
independent of µ.

• in MS, MS scheme, n point function in terms of mR, eR retain µ-dependence. (or µ̃), but

mR = mP +ΣR(mR) = mP

[
1− α

4π

(
4 + 3 ln

µ̃2

m2
P

)
+ O(α2)

]
. (17.124)

Observables O must be µ-independent,
d

dµ
O = 0 . (17.125)

This leads to the renormalization group equations (RGE). Bare quantities must be µ-independent.
So the RGE fro charge follows from

0
!
= µ

d

dµ
e0 = µ

d

dµ

(
µ

ε
2 eRZe

)
⇔ µ

d

dµ
eR = β(eR) ,

(17.126)

where β(eR) is called the β-function, computed in perturbation theory, in this case β(eR) =
e3R
12π2 to

the leading order.

17.9 Infrared divergence

When computing Z1, Z2 in the on-shell scheme, the integral of the Feynman parameter
∫
. . . dx is divergent.

It can be traced to k2 ∼ 0 region, which is called the IR divergence. We regulate this divergence by
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introducing a photon mass mγ , in violation of gauge invariance. The source of these divergence is that we
cannot distinguish between

e+e− → e−e+

e−e+ → e−e+γ ,
(17.127)

for arbitrary soft (low energy) or collinear (in direction of electron) at any finite detector resolution. The
similar thing to UV divergence is that it arises in unobservable quantity, e.g. S-matrix with only e−e+ in
outgoing channel. The difference is that the divergence cancels in cross-section computed for process with
different external legs,

+ + + , (17.128)

The IR divergence is in phase space integral.

Theorem 17.1. Kinoshita-Lee-Nauenberg theorem: The infrared divergence cancel in unitary theories
when soft quanta both in the incoming and outgoing channel are taken to account,

Remark 17.10. In QED, it is sufficient to include only soft quanta in outgoing channel. (Bloch–Nordsieck
cancellation.)

17.10 Renormalizability

17.10.1 Superficial degree of divergence

In a 1PI diagram, all internal lines carry momentum that is integrated over. We can estimate superficial
degree of divergence D of a diagram defined via

diagram ∼
∫ ∞

kD−1dk , (17.129)

• D > 0: power-law divergence,

• D = 0: logarithm divergence,

• D < 0: convergence,

by counting number of interactions vs. number of internal propagators.
Data of diagram required

• Γf , the number of internal lines of filed type f .

Example 17.7. For QED, f is photon or electron.
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• Mass dimension of propagator [〈0|T
{
φ∗f (x)φf (x)

}
|0〉].

2[φf ] = 2df = [〈0|T
{
φ∗f (x)φf (x)

}
|0〉] = [

∫
d4p] + [∆f (p)] = 4 + [∆f (p)]

⇒ [∆f (p)] = 2df − 4 , ∆f (p) ∼ k2df−4 .

(17.130)

Example 17.8. ∆φ ∼ k2×1−4 = k−2, ∆ψ = k2×
3
2
−4 ∼ k−1.

• Ni, the number of vertices of type i, with nif fields of type f .

Example 17.9. For QED, there is only one type of vertex, with nA = 1, nψ = 2.

• Ef , the number of external lines of type f .

Using these data, we can see that

D = 4× [number of integration] +
∑
f

Γf (−4 + 2df ) . (17.131)

Notice that
[number of integration] =

∑
f

Γf − (
∑
i

Ni − 1) , (17.132)

where Ni comes from the momentum conservation δ-function at each vertex and the −1 comes from the
overall momentum δ function. We can remove Γf dependence in D by involving

2Γf + Ef =
∑
i

Ninif . (17.133)

Example 17.10.

∼



Ef = 4

Γf = 3

Nx = 1 nxf = 4

Ny = 2 nyf = 3

. (17.134)

Remark 17.11. In QED, 2Γψ + Eψ = 2N , Eψ must be even.

This gives

D = 4−
∑
f

dfEf −
∑
i

Ni

(
4−

∑
i

nifdf

)
. (17.135)

We define ∆i = Ni(4−
∑

i nifdf ), is the mass dimension of coupling of interaction giving via to the vertex[∫
d4xgi

∏
φ
nif

if

]
= 0 . (17.136)

For ∆i = 0, only a finite number of n point functions. (i.e. a finite of configuration {Ef}).

Definition 17.3. An interaction is

149



• super renormalizable: ∆i > 0.

• renormalizable: ∆i = 0.

• non-renormalizable: ∆i < 0

17.10.2 Cancelling divergence

What momentum dependence can a divergence due to a loop integral have? TO answer this question,
we first claim that the coefficient of divergence is polynomial in external momenta. We argue that the
divergent integral will have external momentum p dependence in denominator, e.g.

I(p) =

∫ ∞

0

dk

k + p
. (17.137)

Differentiating with regard to p lowers the degree of divergence, finally we arrive at a finite integral, e.g.

d

dp
I(p) = −

∫ ∞

0

dk

(k + p)2
= −1

p
. (17.138)

Integrating with regard to p yields the original integral, with divergent coefficient multiplying monomials
in p, e.g

I(p) = − ln p+ c , (17.139)

where c is the integral constant (divergent). More generally

∫ 1

0

kDdk

k + p
=

D∑
n=0

anp
n + cpD ln p , (17.140)

where the coefficient an diverges and c is finite. Monomial p-dependence cab be generated via derivative
interactions. To cancel divergence ∝ pD from Green’s function with Ef external legs of type f , we introduce
an operator with Ef fields of f and k derivative of Lagrangian for k = 0, . . . , D. Dimension of coupling
constant of this operator 4−

∑
Efdf − k. Now assume that the interaction generating the divergence was

(super) normalizable, which means that

D ≤ 4−
∑
f

Efdf ⇒ 4−
∑
f

Efdf − k ≥ 0 , (17.141)

the operators required to absorb all divergence are (super) renormalizable. By introducing all such opera-
tors in the Lagrangian, all divergence are cancelled. Why these arguments are not complete?

• There exists sub divergence: superficially convergent diagram may has sub-diagrams that are diver-
gent, e.g.

∼ 4− 4× 3

2
= −2 , (17.142)
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but the diagram is divergent (has a loop), it will cancels with

(17.143)

• Overlapping divergence.

Theorem 17.2. The BPHZ theorem: A normalizable theory (i.e. a theory containing only renormalizable
or super renormalizable interactions), introducing counter terms for all (super) renormalizable interactions
is sufficient to absorb all divergence.

Example 17.11. In QED, ∆e = 0, which is a renormalizable theory.

• For 〈Ω|T
{
ψ(x)ψ̄(y)

}
|Ω〉, the mass dimension is 4− 2× 3

2 = 1, we introduce δm(k = 0), δ2(k = 1).

• For 〈Ω|T {Aµ(x)Aν(y)} |Ω〉, 4− 2× 1 = 2, we introduce δ3(k = 2).

• For 〈Ω|T
{
ψ(x)ψ̄(y)Aµ(z)

}
|Ω〉, 4− 2× 3

2 − 1 = 0, we introduce δ1(k = 0).

• For 〈Ω|T {Aµ(x)Aν(y)Aρ(z)Aσ(w)} |Ω〉, 4− 4× 1 = 0, which is finite.

Remark 17.12. There exists non-renormalizable theory, for example, the gravity.

L =M2
pl
√
gR (17.144)

with the coupling constant 1/Mpl, Mpl is the Planck mass. It is non-renormalizable, which requires an
infinite number of counter terms with higher and higher order of derivatives to absorb all divergence. These
higher order terms suppressed by (E/Mpl)

n and there is non-analytical momentum dependence generated
by loops.
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