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Though it is not perfect, it is a good guide for new beginners learning the quantum field theory.

0.1 Notation and convention

The metric convention is messy in theoretical physics. Here we adopt the convention that

+1
-1

Npv = (1)
-1
In this lecture we just consider the quantum field theory in flat spacetime equipped with Minkowski metric.

And we adopt the Einstein summation convention.



Chapter 1

Introduction

1.1 Background

We needs some framework to describe elementary particles and their characters. QFT is quantum mechan-
ical theory. What is quantum mechanical? The theory is based on the Hilbert space and the observable
are the Hermitian operators acting on this space. However, we don’t have like Hy = —% terms, which is

non-relativistic. Relativistic QFT should satisfies two properties:

o Allow for particle creation/annihilation

e Lorentz invariance
Then comes to the two elementary questions:

e What quantum fields are allowed?
e What formalism we should use?

e How to extract physics?

A theory is said to be solve if we could solve the energy spectrum of the Hamiltonian. We will also consider
the scattering problem using the perturbation theory. The computation method is called the Feynman

diagram. The tree level diagram is as the following shown.

et T
-
k
e” . (1.1)

The loop diagram includes divergent integrals, which leads to the renormalization program.

1.2 Incorporating special relativity

We want to combine quantum mechanics and special relativity, which means that the Lorentz group must

act on the Hilbert space. This guides us to study the representation theory, especially the representation



of Lorentz group.

1.3 Incorporating the creation and annihilation of particles

1.3.1 Fock space

We denote %, as the n-particle Hilbert space.
Example 1.1. If we consider Free boson of a given mass m. The Hilbert space series is

Ay =C = (|0))
- Lo(R3)  normalizable
b {|p*) |p?> = m?,p° > 0) non-normalizable (1.2)

ey — {< S (L2(R® @ La(R?)))

[P, p5) [p7 = m?,p} > 0)
where S denotes the symmetrization. The Fock space is the direct sum of these spaces

yzé% (1.3)

n=0

Definition 1.1. We define the inner product of this space, (-,-) : F x .F — C, which satisfies

. (7)|j$””><jf’n = (a)b;ﬂn
* ('7')|jfm><%’n =0 if m#n
Normalization of the inner product:

S :(0]0) =1
A (plk) = 2w,(21)36C) (5 — k), wp = /m? + % = p°
(1.4)

A = (kr, - kalpr, o) = [ 2wk, D T @)% (55 — k)
=1

0€S, j=1

For example,

(P, pall, ko) = 2, 2y | (2m)*6) (ki — i) (2m)*0) (s — ) + (2m)°6) (ki — i) (2m)*0 ) (R — )

(1.5)
1.3.2 Creation and annihilation operators
If we fix the mass m of the particle, for any p’ € R3, we define
aL|p1,---,pn>:$1p,p1,---7pn> (1.6)
v/ 2wp

10



Remark 1.1. Here we don’t use the vector notation p because we require the momentum are on-shell,
which means that p° = \/m?2 + p2 and  fizes the four vector p.

As
[p1, P2, Pn) = P2, P15+ Pn) (1.7)
we have
[ag,l,aLQ] =0. (1.8)

Properties 1.1. Properties of the adjoint operator a,: Let |¢) € 4, |¢) € 5,
(avak 14).10)) = (af [} . ab 1)) - (1.9)

If we requz’re is mon zero, we can see that m = n. If it is zero, we can see that apazji”m 1L ;. These
lead to
apau%d s o = S = ap Iy — Hp1 . (1.10)

But we have to be careful about the case when m = 0. For a state |¢) € .Z, aL [Y) € @527, which

means that

(100,af 1)) =0 =(al0), 1) = axlo) L7 (1.11)

The only possible case is
ax [0) =0. (1.12)

Along the same line of reasoning
ap lkr, k) = > 2w, 2030 (k= Ei) k1, ki, R k) (1.13)
i=1

We need to determine the commutator [a};, ap]. Noticing that

- 2wy, N
aLak\kl,...,kn> :Z ﬁ@w)gé(?’)(kz—ki) |p, kl,...,ki_l,ki+1,...,kn>, (1.14)
i=1 p
2wy, - o
agap[ky. .. ko) =300 [ S @mY O (E = Fo) Ip Ky, Ky KK (1.15)
i=1 p
2 o
|52 @m) D E =B [k, o) (L.16)
Wp

This leads that
[al, ar] k1, k) = —(2m)36@ (5 — k) k1, ... k) - (1.17)

For arbitrary basis |ki,...,k,) € # the equation holds, the only possibility is
lak, a}) = (2m)36®) (k — p) . (1.18)

11



To summarize, the creation and annihilation operator in the Fock space is

Creation: a;‘(%"m s A — Kot (1.19)
Annihilation:  ap| s, : K — 1. (1.20)

They satisfy the commutation relation
i = lapax] =0, [ap, af] = (2m)*6) (5~ F). (121)

[CLT ay,

Remark 1.2. We need to be careful about the normalization factor for symmetrization, e.g.

1

Ip1,p2) = 7o ([p1) ® |p2) + |p2) ® [p1)) - (1.22)
1.3.3 Identity operator on J#
The identity operator is
dp 1
1= [ G 0l (1.23)
The action of the identity operator is
09 = [ a2t i ok = [ a2 ) e 2 F) = ) (1.2
) (2n)3 2w, PrpIs = (2m)3 2w, P pO AP S '

We need to be careful about the Lorentz invariance of each ingredients. First,

Theorem 1.1. The measure part f is Lorentz invariant.

27r)3 2w

Proof: Recall the property of the delta function:

1

f(zo)=

——5(x — x0). (1.25)

We could see that factor of the the on-shell momentum p could be rewritten as

oL [0 — VB m2) + 60+ v m?)] (1.26)

12p°|
Rewrite the expression
dgp 1 d4p .
/(27r)32w - / (2myi (20 (") =9 —m?) 0("). (1.27)
2

The factor d*p is Lorentz invariant as det A = +1 for A € O(1,3). If we restrict A € SO(1,3), det A = 1.
0(p°) is invariant under the orthochorous Lorentz group O'(1,3), which proceeds the direction of time. So

the it is indeed Lorentz invariant.

12



1.3.4 Constructing operator out of q,, a;

The Hamiltonian is

d®p
H = /Wu}pa;ap, (128)
such that
- dp v
H\ky,... ky) = H 2wy /Wwpapapakl coay [0) . (1.29)
To simplify the expression, we need to exchange the position of a, and aLl. Since a,paz1 = azlap +
(2m)36(3) (lﬁ ) the expression then becomes
(H V2w, ) Tazlap aLn |0) —|—wk1a21 ...azn |0) . (1.30)

Repeating this procedure until the annihilation operator directly acts on the vacuum, the expression reduces

(Zwk> ki, ..o k) (1.31)

However, we need to emphasize that quantum field theory should be Lorentz invariant. We should check

to

that the definition of the Hamiltonian meets this condition. This leads to the introduction of the quantum
fields.

1.4 Quantum field

In this section, we would introduce the building blocks for Lorentz invariant theories. The free scalar field

at a fixed time could be written as

d‘;p 1 RN RN
— 1P 1 —ipZ
Pol@) = / (2m)3 /2w (apep Fape” ) ’ (1.32)

where the subscript 0 represents the free field.

1.4.1 Interpretation of ¢(7)

(k[ ¢o(Z) 0) = / 27r3 apeiﬁ'gZ + a;e’iﬁ'f> |0)
| 1
T _'lp$ 0 k / —ip -7 1'33
2wp o= V2o A )
| . o
_ P ) 35(3) E_ _ —ikd I
/(277) 2wp( ) ( p)=e o (k[z) ,

which means that ¢o(Z) |0) can be interpreted as generating a particle at the position Z: ¢o(Z) |0) ~ |z).
Properties 1.2. (a) ¢o(%)|0) € J4.

13



1.4.2 Time dependence

The Hamiltonian H is the time evolution of operator
i[H, 0| = 0,0 for any operator O . (1.34)
The solution of this operator differential equation is
O(t) = efto(0)e (1.35)

Note that 0;H = i[H, H] = 0, hence H is time-independent.

H= / (ij))s (wpaf (0)ap(0) + V(0)) = e~ pett = / (;ljrf)’g (wpa(thap(t) + V(1)) (1.36)

which means that we could evaluate the a, and a; at any time ¢. The system has time-reversal symmetry.

There is no special moment, which corresponding to the conservation of the energy.

Time dependence of ap,a;, for free fields

3
Oran(t) = ilH(0).ax(t)] = [ 555 el (0).0u(0)]
3 -
=i [ (g~ @R E = () (1.37)
= —iwgag(t) .

Again, the subscript 0 means the free Hamiltonian with no interaction and we have already used the

commutation property to simplify the equation. The solution of this differential equation is direct
ar(t) = ap(0)e ™kt (1.38)

Similarly,
al (t) = e™*tal (0). (1.39)

Time dependence of free quantum field

r d’ 1 ip-Z —ipE
¢0(0,x):/(27r];32%)<ap(0)6p +al(0)e™? ) (1.40)
= % =\ ,—1 d3 1 —ip-x ip-x
= %wmzeM%wem:/@£3Q%QMWap+%@%p), (1.41)

where we use that convention that p - z = ptz,, the equation (1.38} [1.39) and p0 = wp. Note that

3 2 ) )
8Ma#¢0(:p) = D¢0(x) — —/ (;T];:s];w (ape—zp'm + a;[)ezzm:) — _m2¢0(3’}) . (142)
p

The equation holds if the momentum is on-shell. We conclude that the free scalar field satisfies the Klein-

Gordan equation.

14



Free field vs. interacting field

For more complicated Hamiltonian, we cannot solve for a,(t) analytically. If we set a,(t) and al(t), the

scalar field could be written as

d®p 1 , -
-\ —p- -'- .
o(t, T) = / o [ap(t)e Wy ol (£)eP] (1.43)
Here we define the a,(t) as
eta,(0)e "1t = q,(t)e Pt | (1.44)
This seems a little bit tricky, but only this definition is consistent with the formalism e*'¢(0, &)e ="t =
o(t,Z). At equal time, the commutation relation is
[ap(t>a az(t)] _ eipotethap(O)e—th, e_ikotetha};(O)e_th _ ei(po—ko)teth[ap(0)7 aL(O)]e_th ( )
1.45

-

= 2m)° s (5~ k).

where we use the on-shell condition (the spatial momentum could determine the time component of p#.).

1.4.3 Commutation relation of quantum fields

We will argue that ¢(t,Z) and II(¢, %) = 0;¢(t, Z) are canonically conjugate operators. At equal time,
consider the commutator with x = (¢, %),y = (¢,9),
dp &Pk 1 1
(6., 0.9 = [ x
(2m)% (2m)3 /2, v/ 2wy, (1.46)

[ak(t)e_““ +af ()e*® ay(t)e T + aj,(weipﬂ .
Evaluate the commutator, the nontrivial term is

e~ KPR T g, (1) i (1)) + R P IIRTRET (] (1) (1)), (1.47)

because

lax (1), a(t)] = (2m)*60) (k = 7). [a} (1), ap(t)] = —(2m)*6® (k - p) . (1.48)

Substitute this term into the equation (|1.46) is

3 - P o o
002,000 3)] = [ g [FED - e FED] (1.49)

271’)3 ka

Noticing that wy = w_g, the integral is integrated in the whole region of E, if we consider the variable

transform k — —E, the integration is the same,
= [8(t, %), (L, §)] = 0. (1.50)

(¢, 7) = 0:¢(t, &) = i[H, ¢(t, T)] = i[Ho + V(¢), ¢(t, T)] = i[Ho, ¢(t, T)]. (1.51)



Consider the free field and using i[Hy, ax(0)] = —wgar(0),

3 3 . .
[p(t, Z), 11(¢, )] = —1 / 4 ;lﬂk \/ﬁ,/ ap(H)e™ P + af (1)e™?, ay(t)e ™ — af (t)e'*| . (1.52)
p

Evaluate the commutator, the equation reduces to

- - | d3 i (=T i (—7 . d3 _ S
[Qﬁ(t,l'),ﬂ(t,gj)] - _E / # (_elp( 9 — e o y)> = Z/ (17TZ))36p( D = 25(3)(37 - y) : (153)

Similar calculation shows [II(¢, ¥),II(¢, %)] = 0.
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Chapter 2

Classical Field Theory

2.1 From discrete case to fields

2.2 Noether theorem

Continuous symmetries of the Lagrangian leads to the conserved current.
Example 2.1. Given the Lagrangian of the complex scalar field
& = 0,001 6" — m|o[2. (2.1)

The complex scalar field has two independent degrees of freedom. There is two way to consider it. One way
is to write the complex scalar field as ¢ = ¢1 +ipa, where ¢1, P2 are both real scalar field. The other way is
that ¢ and its conjugate ¢* are independent scalar field. The equation of motion derived by Fuler-Lagrange
equation 1s

(@+m?*)¢p=0. (2.2)

£ is obviously invariant under the global symmetry transformation
b — % ¢F = eTr. (2.3)
Such a symmetry is called U(1) symmetry.

Noether theorem: Assume .Z(¢1,...,¢n,0ud1,...,0,0n) is invariant under the transformation

¢i(x) = di(a) == ¢i(x; ), (2.4)

where « is independent of x (global symmetry?). The Lagrangian is invariant under the transformation,

which means that B B
0L (p(a), Oudp(r))

o =0. (2.5)

At the same time., i i

9, da + a(auggn) 9 (2.6)

n
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Rewrite the second term of the right hand side of the equation as

0.2 () 0L 0o 0L o
= =0 | ——5—| "7 (2.7)
9(Oudn) Oc O(Outpn) Ocx O(Ouepn) Ocx
Put out the common terms then the equation becomes
02 o) _[02 _, oz 106, , (0 oG,
(upn) Oa o | 9%n A(uon) | O 90y pn O (2:8)

y (22 95
_;au(aauq;n 804)7

where we have already assumed that all fields satisfy the equation of motion at the second equal sign. The

B 0L ¢y,

Noether conserved current is

n
By invariance on «, evaluate at a = 0 (¢(Z,0) = ¢(x)),
O

0.8
JH— En: G(dea% N s (2.10)

a=0

Obviously 9, J# = 0, which is the requirement of the conserved current. As the associate charge,

Q= /d%JO (2.11)

is conserved since

0:Q = /d3x8tJ0 = —/d%@i.]i = surface integral = 0. (2.12)

Example 2.2. Take the £ given in , and we define <]3(a) —e g gr = e'¢*. The conserved current

associated to the symmetry transformation is

0% 0L s e
T = 5800 B gy ed = O (Ci0) + D0lieT) = il — 59). (213

One can verify that 0,J" = 0.

2.3 The Maxwell Lagrangian and gauge invariance

Recall that E and B , the electromagnetic field strength F),, = 0, A, — 8, A, where A, is gauge field and

F,,, is invariant under the gauge transformation
Ay — Ay + Oye, (2.14)
where € is arbitrary function of spacetime coordinate.
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2.4 Distinction between gauge transformation and (global) symmetry

transformation

The Lagrangian of the electromagnetic field is
1 v
Z = _ZF‘“’F . (2.15)

The Euler-Lagrange equation is
0, F" =0, (2.16)

which is the vacuum Maxwell equation. If we couple electromagnetic field to external sources, the equation
of motion will be
O FH = Jv. (2.17)

Example 2.3. The external sources associated to a static charge of strength e at the origin is

=0, z) = ed®(2),
gy = =0 o) =@ os)
w=1 0.
The corresponding Lagrangian associated with sources is
1w A JH
L = _ZF F,, —A,J". (2.19)

Not the question raises, what if we do the gauge transformation now? Is the Lagrangian still invariant?
1
L = _ZFWFW — (A +0ue)J! =L — 0, (eJ”) + €0, J" . (2.20)

The second term of the right hand side of the equation is the total derivative, which will be the boundary
term after integration, so it could be ignored. If we impose the conserved condition 9,J" = 0, the
Lagrangian is invariant under the gauge transformation. In other words, if we require .Z is invariant under

gauge transformation, it is equivalent to requires the coupling to conserved currents. Furthermore,
o F* =J" = 0,0,F" =0,J" =0. (2.21)

Considering conserved current also requires the equation of motion. Coupling electromagnetic field to a
dynamic source, we require 9, J* = 0, which we can say that it is on shell. It is not good enough, we will

require gauge invariance.

2.5 Feynman rules in classical field theory

The goal of the section is to use Feynman rules (graphical method) to solve the equation of motion.
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2.5.1 Ex: electromagnetic field with static source at the origin

Impose the Lorenz gauge 9, A" = 0,
J" =0, F" =0, (0"AY — 9" Al) = gA”, (2.22)

using the component form,
OAg = 653($), 04;, =0— A4,=0. (2.23)

The gauge condition requires dgA° = 0. Solve the differential equation through Fourier transformation

method, setting
Pk

Ao(x) = / WAO(E)eiE'f, (2.24)

which is the static Ansatz due to gauge condition.

0Ag(z) = / (;‘l:;gmx (AO(E)eiE-f) - / (;l:;?,k? (AO(E)e“?-f) —e / Pk ks = Ay(E) = Ei (2.25)

Inverse Fourier transform gives

2.5.2 General source: first Green function method

Inhomogeneous PDE for a §-function is
0.0 =J, D,0(z,y) =W (z—vy), (2.27)

where 11 is called the Green function. Then based on the PDE theory, for arbitrary source, the solution is
¢(z) = [ dyll(z,y)J(y),

0,0(a) = [ dyD.w,)I) = [ 950~ )Iw) = ). (228)
Of course the Green function will be fixed by the boundary condition. Back to our problems, the differential
operator is ©, = —0O, based on the discussion above,
— Oll(z,y) = 6 (z — y) = / d'k e*@E=y) S I(x,y) = / d'k ieik(w—y) (2.29)
' (2m)4 ’ (2m)% k2 ’ ’

where the notation k(z —y) := k*(x, — y,).

2.5.3 More complicated green function ®, determining solutions

Consider the Lagrangian,

1 1
L = 50,60"¢ + §A¢3 +J¢. (2.30)
The equation of motion is
O¢ — (A\p? +J) =0. (2.31)
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Suppose A is small parameter, the Ansatz is ¢ = Z:ﬁ% A", , satisfying
2 2 2
O (g0 + Ap1 + X2+ ...) = A(do+ A1 + X +...)" —J =0. (2.32)
Reorganize the expression, we have
(Odo — J) + A (Od1 — ABY) + A2 (Op2 — 2¢061) + ... =0 (2.33)

The solution for the coefficients are

on(o) = [ dlymi(e. ) 0), (2.34)
o) = - [ dlye o (2.35)
po(x) = — / d*yTl(z, y)2¢0¢1 , (2.36)
or diagrammatically,

o= T@y) ) (2.37)

J
o1= g (2.38)

J

J J
o= " + 7 (2.39)
J J
J J

The trivalent vertex comes from the interaction ¢3. Perturbation theory is governed by Feynman rules.

The orders of contribution equal the number of vertices.

Remark 2.1. Only tree level graphs occur, i.e no loops. In fact, the loop diagram comes from the quantum

effect.

2.6 From classical field theory to quantum field theory

The canonical quantization procedure is to replace the Poisson bracket {-,-} by the commutator %[, .
However, ordering issues have to be dealt with. A corollary from Noether theorem is that for symmetries

such that ¢, (x;€) = F(pp(x),€), i.e. the transformation doesn’t include II dependence.
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Corollary 2.1.

[Qa¢n($)] = _Z66¢n(x) where 55¢n(x) = aqbge(l‘)

i.e. @ 1s the infinitesimal generator of the symmetry.

Proof:
@ on(t.8)] = | [ @005 6,(0.9)

= [/d3yzwée¢n(t,g),¢m(t,f)] :

By assumption, d.¢,(t, %) doesn’t include Ik (¢, %), so the expression is
S [ a0, 60080000, 5) = ~i8.6m 2).
n

where we have already used the commutation relation between II and ¢.
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Chapter 3

In and out states and the S-matrix

3.1 Scattering

The scattering picture: the particle flow comes from past infinity with momentum p. At time zero, the
scattering happens. Then the detector will detect the particle at the future infinity, with momentum p’. It
is natural to introduce two classes of Heisenberg states. One is |p1,...,pn);, vector denoting a state which
in the far past corresponds to a collection of free state at momentum p;. |pi,...,pn) ., s above of far part

replaced by far future. The scattering probability is

‘Out <p_i/7"'7p_;€/‘p_i7"'7p:L>in‘2 (31)

If we use the abstract indices to replace the specific state and define S matrix, the matrix element is Sg,:
S8a = out (P1's-- D [PL, - Pn)yy, = out (Blad, - (3.2)

Note we define particles as energy eigenstates of the free Hamiltonian
Holp) = Eplp), Ep= \/m (3.3)

In and out states should be eigenstate of the full Hamiltonian H = Hy+V of the same energy, approximated

by free states in far past/far future.

3.2 Defining in and out states

Match Heisenberg and Schrédinger picture states at ¢t = 0, i.e. ‘¢H> = ’¢S(O)>.
o) = e 1¢5(0)) = |95 (1)) - (3.4)
Definition 3.1. Define in and out states. We assume the following equation holds under the limit,
L iHL _ i oiHot
tli)rgoe ’¢>2n tli)I&e ‘(b) ) (35)
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likewise
lim e *H|g), = lim e "ot ) . (3.6)
—}

t—o00

With Q(t) = etfte=Hot we have

)i, = Q(=00) [9) (3.7)
10) our = $2(20) |9) - (3-8)

In particular, introduce |pi,...Pn) € Hfee and the in and out states has the property that

H‘ﬁlﬁ"'7pn 1n/0ut prz ‘pl;---; >1n/out ) (39)
i Ht = i Hot =
tlgl:nooe ’ |p1a s 7pn>out/jn = tlg:nooe o |p17 s 7pn> : (310)

Remark 3.1. To make sense of this equality,the momenta eigenstate are not localized. It needs to be

interpreted as in the whole region:

. _iH . . —iHot | > -,
i [ SO ) o = T it F)e T ) (3.11)

t—=o0

Note that the equation (3.10)implies HQ(+o00) = Q(+o00)Hy by considering the action on a basis of
Hree:
HQ(£00) [P1, .-, Pn) = H |®)outjin = Lo |0) ot jin = U(F00)Ho |1, - .-, ) - (3.12)

Rewrite the expression as

(3.13)

‘t—>:i:oo ’

d . .
0 = iHQ(+o0) — i2(do0)Hy = o (eZHte—zHOt)

whose interpretation is that the time evolution at early and late time is approximately free. In terms of

), the matrix element of S matrix is
Spa = out (Bla)y, = (8127 (00)Q2(—00) |a) . (3.14)
It motivates us to define the operator U(t1,t2),

Definition 3.2.
U(tl, tg) = QT(t1>Q(t2) = eiHotl eiH(tl_tQ)e_iHotQ . (3.15)

3.3 Creation and annihilation operators for in/out states

Recall that
‘p>in/out = lim Q<t> ’p> . (316)

t—F oo

We want to have some operators, similar to the free case, that could create |p);, Jout acting on a vacuum.

A natural Ansatz is that )

\/TTP ‘p>in/out =

af (F00)2(F00) [0) (3.17)
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where we define [Q2); /¢ (up to possible normalization) as [€2) Q(Fo0) |0). Consider it carefully,

in/out * =
) i _ t
= lim_al()0(1)[0) = lim_0(t)alo(1)]0) (3.18)

where the subscript 0 denotes free case. Recall that in the interacting field, the time evolution of a, is
based on the equation ((1.44)), then for creation operator we have

ethaL(O)e*th = az(t)eipot = az,(t) = e*iwptetha;r,(O)e*th (3.19)

So the left hand side equation becomes
al (1)Q(t) = e rtefllal (0)e~HEeiH g iHot (3.20)
Meanwhile the right hand side of the equation is

Q(t)a] o(t) = eMtemiHotemiwnt ittt () =iHot (3.21)

It is consistent to set a},(0) = a;O(O), which matches on interacting and free creation operator at time ¢ = 0
such that

CLT (t) _ efiwptethaL’o (O)efth — efiwptethefiHoteiHotaL’O (0)€7iH0te’iHot€7th — Q(t)a;p (O)QT (t) ) (322)

d

= Owal(t) = <dtQ(t)> al o(0)Q1(t) + Q(t)aL’O(O)%QT(t) : (3.23)

Likewise lim; o0 ata;f,(t) = 0 which is the consequence of the time evolution at early and late time is

approximately free.

3.4 S-matrix, cross section and decay rate

In scattering experiment, one important physical quantity is the cross sectional area &/ of the beam. the

cross section o will be defined as

o # of incoming particles -t . .
== ( 2 of scattoring ovonts = scattering probability &2 . (3.24)
Quantum mechanically,
1Sy |2
o I (!f’i\>>! ‘ (3.25)

If we extract the trivial scattering part S = 1+ ¢T. Because (f|j) = 0 for f # j, (f| S|i) =i (f| T |¢). It

is often useful to extract the 4-momentum conservation d-functor

T = (2m)*6W (Z pi—> pj> M (3.26)

out

(f| A i) is called the matrix element.
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Example 3.1. One important example is the 2 — n scattering, the differential cross section

1

do =
7T 2E2EL [T —

RAI® (3.27)

where the %] is kinetic factor, |.#|* will be computed through Feynman diagram and dll is the

1
2E12E2|171—v2
Lorentz invariant phase factor. We define the Lorentz invariant phase space factor as

1 dPp;
dllpps = (27)*6™) (Sp) H 2m)3 TJJEJJ ' (3.28)
j

final states

There’s a question about the Lorentz invariance. The beam azis breaks the rotational symmetry to axial

symmetry, but expected boost symmetry along this axis (usually we choose it as z-axis). Pay attention that
here the |U1 -Us| is relative velocity of the beams as view from the laboratory frame, which means that

Pi_ P

2E12E2|’(71 — 172| =4k FEy | — — ==

= 4|piEs — p3E1| = 4|pip5 — p3p}| = 4leuanp! Pl - (3.29)
Ey  E»

It seems that there is some redundant indices appear. However, in this case, the only possible non-zero
term is u = 0,v =3 or u = 3,v = 0, which doesn’t relate to the indices x,y, so the equation holds. The

Levi-Civita antisymmetric tensor is Lorentz pseudo tensor by
A AN AP A €upe = (det A)er kykaks » (3.30)

which proves that the kinetic factor is indeed boost invariant along the z-axis.

Example 3.2. Another special example is the decay process, which can be viewed as the 1 — n scattering

process. The definition of the decay rate is

# of decays per unit time

I = (3.31)

# of unstable particles

The differential decay rate is
1
dl' = — |4 |*dl 1ps . 3.32
o, 1 dMLps (3.32)
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Chapter 4

The LSZ Reduction

LSZ is the abbreviate of three people’s name: Lehmann-Symanzik-Zimmermann.

4.1 LSZ formula

S-matrix can be extracted from a time order product of quantum fields, which is exactly the LSZ formula,

out (1), = [i/d4x16_ip1x1(ml +m?) x ... % i/d%me”pmxm(mm + m?)

X out (2 T {P(x1)...0(zp)} |Q),, + contact terms,

(4.1)

where the contact terms are the contributions involving integration over §(*) (z; —x;) factor. The minus sign
in the exponential e~i% represents the incoming momentum while the plus sign represents the outgoing
case. First we focus on the scalar field for simplicity. Here the 7 denotes the time orderingﬂwhich action
of the product of field is the permute them based on the time component such that later time are to the

left of earlier times.
T{o(0)o([t)o(—[t])} = o([t])d(0)d(—[¢]) - (4.2)

7 just manhandles the operators within the brackets, placing them in order regardless of whether they
commute or not. A question raises immediately, it this operation Lorentz invariant? We leave this question
later and we will show that the spacelike separated field commute. We denote (...) := ou (] ... |Q),,. The

factor O + m? becomes —p? + m? in Fourier space, which means that

[i/d%e—im (D+m2)...] (7{..}) = {i/d%e—iw (—p2+m2)...] (T{...})

(4.3)
= (—p? —l—m2)z'/d4aceip’”...(ﬁ{...}},

if the n-point function falls off sufficiently fast at co. These factors will therefore remove all terms in the
time-ordered product except those with poles of the form ﬁ, corresponding to propagators of on-shell
particles. i.e. LSZ obtains S-matrix as residues of n-point function of the Fourier transform. Now we want

to prove the LSZ formula.

'In this note, the time ordering operator is always denoted by this notation .7.
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Proof:

The proof is based on two relations,
i [ e (04 m?)o(e) = /ay (ay(o0) ~ a(~0) (4.4)
—i/d4xe_ipx(m +m?)g(x) = /2w, (aj?(oo) - a;(—oo)) . (4.5)
Let us prove this lemma above first. Considering
i / P2 (0% + m?)(x) (4.6)

we have to be careful about the boundary conditions at ¢ — 400, but we can assume that the field fall

fast enough at spatial infinity, which allows us to simplify the above equation as
i/d4xeim(D2 +m?)g(x) = i/d4xeim (07 — 9;0; + m?) ¢(x) = i/d4xeim (07 + P>+ m?) ¢(x), (4.7)

since

i / d*zeP (—9:0;)p(x) = — (x)eP |77 4 / d*z(ip;) e 0 (x)

' . (4.8)
= —(ipi)2/d4a:elm¢>(x) = /d4xﬁgelm¢($).
Using the notation wg = p% 4+ m?, the integral is
+oo . R +oo . < pr—
z/ dtewpt/d?’xelp'x (67 + w?2) () :/ dto; {ewpt/dsxe”’x (10y + wp) gzb(a:)] , (4.9)

as
Oy [P (10 + wp)p(x)] = e (iwp (;19{'—1— wp> + 07 +sz (). (4.10)
The red part of the equation (4.9)) is

L L d3k , )
/d?’:ce_’p' (10 + wp) P(z) = /d?’xe_lp“(iat + wp) / (27T)3\/217k [ak(t)e_lk“” + az(t)elk“” . (411)

We want to evaluate this expression when ¢t — Foo, recall that lim; &gag,(t) =0, limy_, 7o Orap(t) =0,

after the action of the time derivative,

Bk 1 A e A o
= /(2”)32% [(Wk+wp)ak(t)e_’“kt/d?’xe’(’“_ﬁ)'“” + (—wg +wp)al—iezwkt/d3xe—l(k‘+ﬁ)'af:| L (412)

The integration of the spatial indices is easy, which generates two ¢ function,

Pk 1 it . ot )
= / (27)3 \/TTk [(wk + wp)ag(t)e (27r)35(3)(k —P) + (—wg + wp)aLe (27r)3(5(3)(k + ﬁ)} . (4.13)
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Completing the integration and notice that wy = w_p, the a,t part vanishes. The left term is

= /2wpa,(t)e rt. (4.14)

Substitute it into the equation (4.9)),
. Foo , .
= i/d4melm(|:l2 +m?)p(z) = / dtd, [e"r'\2wpay(t)e "] = /2wy (ap(00) — ap(—o0)) . (4.15)
Likewise

i / d*ze™ (0 + m2)p(z) = — /2wy (a;,(oo) - a;,(—oo)) . (4.16)

Back to LSZ, consider the case of 2 — n — 2 scattering,

[i)in = V2w1V2w2a}, (—00) af, (—00) ), (4.17)
Hm@ 00) | Qg - (4.18)

The S matrix element

out (f12); —(
(I

where the second equal sign holds because it is automatically time ordered. The next step is to make

replacement: for arbitrary ap,(00), we replace it by ap, (00) — ap, (—00). For arbitrary aIT,j (—o0), we replace

) out (2] aps(00) .. . ap, (OO)GL(—OO)%T)Q i
(4.19)

i ’:]: i ’:]:

> out (€] f{am( ). "apn(oo)a;rq(_oo)a;r;g} 1D

it by a;gj(—oo) — a]TDj (00). The replacement takes the advantage of the time ordering product, since the
ap, (—o0) will move to the right and annihilate the state and a};j (4-00) will move to the left and annihilate
the state, too. We will exclude trivial scattering, i.e. pi,p2 € {ps,...,pn}. Plugging in the operator
expansions for ap, (00) —ap, (—o0), ... , ag,l (—o0) —ag,l (00) yields LSZ up to d-function contributions arising

upon pulling 8? out of the .7-product.
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Chapter 5

Computing time ordered products

5.1 The Feynman propagator

In this section we will evaluate the free 2-point function. The strategy is to move the annihilation operator

a next to the creation operator al.

5.1.1 Free scalar field

In this section, we ignore the subscript 0 for simplicity, but the reader should keep in mind that we are

discussing the free scalar field. The free scalar field is

() = / (2m)3 V2wr (“ke k4 ale ) K =y = \/’~f">+7m2 (5.1)

We want to compute the 2 point function (0| 7 {p(z1)p(x2)},

dSkl d3k2 1 i —ikix1+ikoxo
<0| ¢($1)¢(l’2) |0> = ( \/m \/T <0| ak‘lakz ‘0> €

1

Bk d3k 1 ik @1 4iko

-/ 6 (2 1m e 20 b — ke (5.)
1 2
:/ d*k Le—ik(ml—fﬂz)
(27)3 2wy, .

Next, we introduce time ordering,

(01 7 {¢(x1)¢(22)} [0) = (0] p(21)p(22) [0) O(t1 — t2) + (O] @(x2) (1) [0) O(t2 — t1)

(z

3 -

_/(;“; 2L [eik'(fl‘f%—iwk(“—tz)@(tl — tg) + e~ FET) gl (- tQ)@(tz—tl)}
T

3 ad — —_ . .
:/(d k Le—zk-(m—xz) [e—zwkT@(T)_i_esz@(_T)] :

27r)3 ka
(5.3)
where we have defined t; — to = 7. We need to check that if it is Lorentz invariant. First, we claim that
eTTQ(T) + “FTO(—7) = lim _ 2 /+OO diweim (5.4)
0\ 2mi) ) o w?—wltie '
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>0

<0

Figure 5.1: The integral contour

Proof

: We will prove this expression by evaluating via residue theorem. We need to specify poles of the function,

1 1 X 1 ith 2wpe
= W1 WELE = €
w? —w?tie  w— (wp—i€)  w+ (wp—i€) F
1 1 1 (5.5)
~ 2w w— (wp —i€)  w— (—wy + i)
Consider two cases
e 7 > 0, the integral will be
-1 WT -1 )
I= / — 2miRes— & = 9mj_— et (5.6)
>0 wi w — (—wk + t€) 2wy,
e 7 < (0, the integral is
1 WWT 1 .
I= / — 2miRes—— — = O, (5.7)
<0 2wi w — (wg, — i€’) Wi
Based on these two calculations, we can see that
N _2& /+oo dw eiWT _ e—iwkT@(T) + eiwkT@(_T) (5 8)
21 ) J o w? —wi+ic ’ ’
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analytically extend the equation we see that the limit also satisfies.

3 - +o00 w '
= <0| y{gf)(xl)gf)(l‘z)} |O> :/dkezk-(ﬂmrz) < 2(4}k>/ diezw'r

(2m)3 Comi ) | w?— w? + ie

:/ d*k L RO (t1—t2)—ik-(#1—&2) (5.9)
@) (K0)2 — (2 + m?) + ie

- / d'k i eik(:rl—xg)
(2m)4 k2 — m2 + e ’

which is manifestly Lorentz invariant. Terminally time ordered vacuum expectation value (VEV) of two

free fields (i.e. their free 2 point function) is called the Feynman propagator Dp(z1 — x2). Note that
Dr(z1 —x2) above is a Green’s function to the EOM of the free field (0 +m?)Dp(x1 —29) = —i6™ (z —y).
We will see that this holds generally later. The ¢e description fixes the choice of adding a homogeneous

solution to the Green’s function.

5.2 Calculating n-point function in interacting theories

Recall that in Heisenberg picture,
i0:0(z) = [0(x),H] = 0O(x)=¢"0(0,7)e (5.10)

If we consider the perturbation theory, H = Hy(t) + V(t), where the interacting part V' (¢) is small. Here

we use the Heisenberg picture
Ho(t) = e Hy(0)e M1t V(1) = ety (0)e T (5.11)

To relate the free theory, we introduce the interaction pictures. The Heisenberg field is ¢(x) = et (0, :E')e‘iH ¢

the interacting picture is
¢1(x) = (0, T)e 0" = po(z), (5.12)

where the ¢o(x) represents the free field. If we transform it back to the Schrodinger picture
o(t, T) = ettetHol g (1) etHot e =HHE — (1) o (2) QT (1) . (5.13)
Recall that

)in = A1E(=00) [0) ,

(5.14)
1) gy = AF(c0) [0)

out

where 47 and A7 are normalization factor, which satisfies 1 = oy (Q[€2),, = 747 = (0] QT (c0)Q(—c0) |0).

With the expression above, we can write the vacuum expectation of time order product as

out <Q’ T {¢($1) s ¢($n)} ‘Q>1’n =

(5.15)
NN (0] QU (00)Q(t1) b0 (1) QT (81)Q(t2) o (22) 2 (£2) - . . Qtn) o () QT (£0)2(—00) 0)

32



where we have assume that t; > to > ... > ¢, without loss of generality. Define
Ulty, ta) = QF (t1)Q(tp) = eHol =i =t2) it
and U satisfies the following differential equation

ZatU(t, tO) = (iHoeiHote—iH(t—to)e—tho 4 eiHot(_Z'H)e—’iH(t—to)e—iHot()>
= eiHOtVe_iHotU(t, to)

=Vi(t)U (L, to) -

We could solve this equation iteratively,
t
Ut,tg) =1— 7,/ dt'VithU(t', to) .
to
If V is small, it is safe to expand the integral

t/

Ult,tg) =1—i tdt’V;(’)( —i dt”V(”)( ))
to

t/
:1—1/ dt'Vi(t') + (—1) /dt/ dt"Vi(t"hVi(") +
to to to

’ This is justified if we

to

1. divided by the factor 2.

(5.16)

(5.17)

(5.18)

(5.19)

Note that we have to impose ¢ > t”. The integration re-
gion of the second term is as the figure (5.2)) shows. It will

simplify our considerations to integrate over the full space.

Figure 5.2: Integration region 2. reverse the orders of the operator when t” > ') i.e. if

we time-order the integral.

Then we have the following equation

U(t,tg):l—i/ dt'Vi(t') + = (—i) //tdt”y{vl(t/)vf(t”)}+

to

By reduction we have

Ut to) = 1—i/tdt'vf<t'>+...+ (=)

to TL‘ to to

=7 {exp {—z/t: dt’VI(t’)]} :

This is known as a time-ordered exponential or a Dyson series.
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Remark 5.1. Based on the definition of U(t1,t2), we have the following relation
Ut t2)U (ta, t3) ti>t2>ts JiHoty ,—iH (t1—t2) ,—iHotz yiHotz ,—iH (ta—t3) ;—iHots _ Ult1,t3) . (5.22)

If we use Dyson series to prove that, it is obvious taking the advantage of exponential function.

Returning our calculation of the VEV or the time order product of the interacting fields. We have

out (@ T {p(x1) ... d(an)} [Q);, =
NN (01 Q1 (00)Q(E1) o (1) (1) (b2) o (22) 2 (t2) . .. Q(tn) o () 2T (£2)2(—00) |0) (5.23)
= N A7 (0] T {U (00, t1)pr(z1)U(t1,t2) - - . ¢1(2n)U (tn, —00)} |0) -

Thanks to the property of time order product 7 that no matter what order of the operators, the final

result will be listed based on the time component. So the operators commute in the time order product,

we rearrange the equation as
t/V[t/V};k <0| 5 {¢[($1) e cb[(xn)U(oo, tl)U(tl, tQ) e U(tn, OO)} ‘O> =

NNF (01T {d)f(xl) oz T {exp {_i /+°° Vl(t)dt] }} 0) (5.24)

—00

where we have already taken the advantage of the property Eq. (5.22)). In time order product, the time

order product operations can be removed since the result will be the same. We fix the normalization factor

as
1
NN = . (5.25)
0|7 {eXp [—i e Vj(t)dt} } 10)
We finally arrive at
017 {é1(21) . dr(wa) exp [~ [* Vi(t)ae] } 0)
out (@ 7 {B(ar) ... 6(a)} [y, = — (5.26)
(0| 7 {exp [—2 It v,(t)dt} } 10)
For a physics theory, if we know the Lagrangian . = %) + Zint, the potential part will be
V= / Br L (o) = Vi = oty emiHot — / B L (01) .. (5.27)
Combine with the time integration, the exponential factor will be
“+o0o
exp [—z’ Vj(t)dt] = exp [z’/dd‘mﬁnt] . (5.28)
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Chapter 6

Hamiltonian derivation of Feynman rules

6.1 General strategy

We will take an example to illustrate the calculation method constructed above. Consider the Lagrangian
of ¢3 theory
Lt = %¢3. (6.1)

The interacting 2-point function is

—+00

out (2 T {¢r(w1)pr(z2)} ), = (0| 7 {¢I($1)¢1(9¢2)6Xp <2/ d4a?-$int(¢>l)> } 0)

—00

00 (6.2)
= (01 7 {6r(e1)ér ()} [0) + / "t (01 7 {ouen)ir(ea)or @)} 0) + ...

we need to evaluate the free n-point function in the interacting picture, with n increasing with the order

in the coupling constant g. We evaluate it at the level of creation and annihilation operator. We write

d1(z) = ¢4 (x) + ¢—(z) with

a3 1. 43 1 .
¢+($):/(2ﬂ_];3 \/melpxa;;?(b—(ﬁ):/@ﬂ_]))g \/meilpxap' (6.3)

The strategy is to move all the ¢_ operators past all the ¢ operators since ¢_ will annihilate the vacuum.

Definition 6.1. Normal ordering: A product of creation and annihilation operators is called normal

ordered, if all annihilation operators are to the right of creation operators. The normal ordering operations

is denoted as : ... :, defined as
: (a;; + ap)(az +ay) = a;az + a;;ak—i— : apa}; CFapay = a;f)a;i + a;;ak + a,tap + apay, . (6.4)
The fundamental property of : ... : is that the VEV of non-trivial normal ordered product vanishes.

Definition 6.2. Contracting two fields ¢(x;), ¢1(x;) in a product of fields means removing them from the

product, and introducing a factor of the associated Feynman propagator Dp(x; — x;) instead.
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6.2 Wick theorem

Theorem 6.1. Wick theorem: The time order product
TA{or(x1) ... or(xn)} =t d1(x1) ... d1(xy) : + : all possible contraction :, (6.5)

where t; # t; for i # j.

Example 6.1.

T Ab1(x1)1(x2)dr(w3)d1(2a)} = d1(21)1(22)dr(w3)P1(24) :
+ Dp(z1 — x2) : ¢r(w3)r(z4) : +Dp(x1 — 23) : Pr(w2)or(wa) :
(
(

(6.6)
+ Dp(x1 — x4) : ¢1(we)pr(x3) : + ... (total 6 similar terms)
+ Dp(x1 — .1‘2) ( xrs3 —$4)+DF($1 —1‘3)+DF($1 —$4)DF($2—{L‘3).
Proof:
We prove this theorem by reduction. First we prove it is true when n = 2.
T {o1(x1)d1(x2)} = d1(z1)dr(22)O(t1 — t2) + dr(22)Pr(z1)O(t2 — 1)
= (: ¢1(x1)dr(22) : +[¢—(71), P4 (22)]) O(t1 — t2) 6.7)
+ (: d1(@2)d1(21) : +[o—(22), o4 (21)])O(t2 — t1)

=: ¢r(z1)¢1(z2) : +[P—(21), P+ (22)|O(t1 — t2) + [p—(72), P4 (21)]O(t2 — 1) -

The last two terms are exactly the Feynman propagator, as

Dp(z1 —x2) = (0] 7 {d1(z1)¢1(22)} |0)
= (0] (¢+(71) + ¢—(21))(P+(72) + ¢—(22))O(t1 — t2) + (¢4 (22) + ¢—(22)) (P4 (21) + ¢—(21))O(t1 — t2) 0)

= (0] [¢—(21), ¢+ (22)|O(t1 — t2) + [p—(22), p+(21)]O(t2 — 1) [0) .
(6.8)

Because the commutator [a,, aq] = (2m)36®) (5 — §) is no longer an operator (or proportional to identity
operator) anymore, the commutator [¢_(x1), ¢4 (x2)] is proportional to the identity operator, which means
that

Dp(z1 — x2) = [¢—(21), 9+ (22)]|O(t1 — t2) + [0 (22), ¢4 (21)]O(t2 — 1) . (6.9)
In this way, we prove that the Wick’s theorem is true when n = 2,
T {or(z1)or(z2)} = dr(z1)dr(z2) : +Dr(v1 — 22). (6.10)

Now we assume that Wick’s theorem holds for n — 1 fields, and let t; > ¢; for ¢ = 2,...,n. Then

T{or(x1) ... o1(xn)} = ¢r(w1) T {b1(22) - .. Pr(wn)}

6.11
= (¢4 (1) + ¢—(21))) : ¢1(x2) ... Pr(xy) : +all possible contractions, (6.11

36



where we use the assumption that ¢; > ¢; and the Wick theorem for n — 1 fields. Notice that for creation

operator, it is safe to move it into the normal order,

G4 (1) : Or(wsy) - - br(wiy) =1 b4 (1) Pr (i) - . dr(wiy) © (6.12)
For the annihilation operator

d—(x1) :r(x4,) - - QSI(ka) =

6.13
c ¢ (x1)pr(ziy) - . d1(74,) + +k contractions ¢ (z1) with ¢(z;;) j=1,...k. (6.13)

Every exchange of ¢_(x1) and ¢ (z;;) will generate a commutator [¢p_(z1), ¢r(z;;)]. The non trivial

commutator is
t1 >tij

[p—(21), O+ (m3;)] =" [p-(21), 9+ (7i;)|O(t1 — ti;) = Dp(z1 — 24;) (6.14)

which generates the right hand sides of the Wick’s theorem for n fields. As

k
O : [] ér(z:) : 10) =0, (6.15)
=1

for k£ > 0, only fully contracted terms on the right hand side of Wick’s theorem contribute to VEV. We
finish the proof.

Remark 6.1. When considering the time order product T {¢r(x1)...¢1(xn)0(xnt1)}, with O(xn41) a
polynomial in ¢1(xn+1), we need to give a make-sense definition of the time order product of

TA{or(x1) ... o1(xn)b1(Xns1) - .. ¢1(Tnt1)}, there are two options to consider this problem
o Consider normal operators O(xn+1) =: ¢1(xps1)" -

e Interpret as

¢r(z)" = lm or(t+(n—1)e7)...ds(t, 7). (6.16)

6.3 General lessons from ¢>-theory

Example 6.2. Two-point function in ¢>-theory with Ly = %qﬁ‘g, perturbatively expanding the VEV of

time order product and list the terms in order of g
e 9% (0| 7 {b1(21)d1(22)} |0) = Dp(z1 — 22)
o gt & [d'2 (0| T {pr(x1)r(22)dr(x)3} |0) = 0 as no possible complete contractions.
e g°: the first non-trivial contribution at this point

)2
(2)! (;) /d4x/d4y (0] 7 {or(z1)b1(x2)¢1(x)>¢r(y)°} |0) | (6.17)

we need to count all the possible contractions term and we will introduce Feynman diagram to keep
track of it.
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6.3.1 Feynman diagrams

Here are the basic building blocks of Feynman diagrams

1. one vertex per internal coordinate (z,y,...) — the number of the vertices equal to the order in g.

For example, if we have two internal point, the contribution of this diagram is of order ¢°.
2. one point per external field, labelled by the spacetime coordinate (z1,...,x,)
3. Contractions are indicated by lines connecting the corresponding points/vertices.

4. The valency of vertices (number of lines connected to it): the number of fields in corresponding

monomial in Zp;.

Example 6.3. In ¢>-theory, at the order of g%, the Feynman diagrams are

1‘1—©—1‘2+ +.%'1—OQ—J}2
1 2 (6.18)
. 65 . 0—0
rN—2I9
rl —3I9
6.3.2 Bubbles
Bubbles are subgraphs that do not involve external points (z1,...,z,), and they can be factored out like

<1+Q_O+@+...> (xl—w2+$14©7;p2+...> , (6.19)

where the first factor will be cancelled against the denominator.

6.3.3 Prefactor

d4xﬂnt

. r+oo
e The % from expanding e J2= generically cancels against n! permutations of internal coordi-

nates giving same contributions. The factor n corresponds to the order of the coupling constant,
which corresponds to the number of the internal points. The permutation of the internal point then

cancels the factor from Taylor expansion.

Example 6.4. For example the Feynman diagram below actually represents two diagram

407 : 1 4@7;172 + xr1 4@71;2 . (620)

o Additional multiplicities: due to identical fields at vertex. It is conventional to normalize interaction

terms by dividing by the number of the identical fields associate to a vertex.

Example 6.5. For example, the interaction terms are

g A 7
§¢37 @qﬁ“, 2!3!5!¢§¢§¢§- (6.21)
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Generically, these prefactors will cancel against multiplicities.

Example 6.6. The Feynman diagram as the equation shows
Z2

" (6.22)

x3

comes from the term ¢(z1)p(z2)d(x3)p(x)2d(y)30(2), there are (31)3 contraction corresponding to this

contraction pattern, which cancels the factor (%)3

However, when the Feynman diagram exhibit symmetries, these cancellations can be incomplete. We need
the symmetry factors.
ifd*z %

Example 6.7. The example of % from e nt not cancelling

w

m@xz , (6.23)

z

the contraction of point x1 with the internal point has 4 choice, the xo has 3 choice, which 4 x 3/4! =1/2.

1

The symmetry factor is 5.

Example 6.8. Example of % from normalization of interaction coupling constant not cancelling,

3314@,@ . (6.24)

T f 1 T T } 1 1 2 1
Hanola)d@o@o@omsmot) . (5) 63 =3 (6.25)

The contraction is

Back to the 2-point function in ¢3, up the order g2 has tree level Feynman diagram is

- . o1 1 1
1 SRR ity *ran—0O0—*
il T2

1 1 () <>
+2><3! @ +2><2><2><2$
r—X9 !

T2

(6.26)

6.3.4 Momentum space Feynman rules for time ordered products
A vertex labelled by the spacetime variable x comes with

e a factor of ig
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o af d*z integration over the attached propagators.

Example 6.9. The Feynman diagram below,

Y z (6.27)

if we do the Fourier transformation, we have

ig/d4:vDF(x —w)Dp(xr —y)Dp(xr — 2) = igx

4 : 4 ; 4 . (6.28)
/d4$/ d’k : eik(xfw) / d’p ¢ eip(:efy) / d’q ¢ eiq(azfz) )
(2m)4 k2 — m?2 + ie (2m)4 p2 — m? +ie (2m)% 2 —m? +ie
The integral of x can be performed, by using the identity
/d%emkﬂﬂ) = 2m) W (k +q+p). (6.29)

This tell us that the spacetime integral at vertex gives rise to momentum ¢ function. To keep trace of signs,
k

we will call e~ incoming momentum at the vertex labelled by z, €’** outgoing momentum at vertex z.

We hence accompany lines corresponding to propagators by arrows,

ko (6.30)

where k is outgoing at x, incoming at w. We then have

w

p/Jlk\ = (2m)*6W(k+p+q), (6.31)
q

y z

if the direction is inverse, the sign is also inverse. This tells us momentum is conserved at each vertex.

An external spacetime is not integrated. Each such point comes with a factor of e’** or ¢~ %
from the attached propagator.
ko (6.32)
x°
All connected lines come with factors
i

k =—" . 6.33
- k2 —m? + ie (6.33)

All indeterminate momentum are integrated over | 7(‘27[;’)“3
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Possible symmetry factor

Example 6.10. The Feynman diagram

q
o P p2 v (6.34)
taking the value
367 [ Gaye | G | o | Gamrm ot k=005 ta a1
X eI Rs p? — 7722 + i€ p3 — 7712 +ieq? — niz +iek? — bez + i€ (6.35)
=t (6;‘;1))14 / é?)i / égﬁ(“)(q —P2 =P X
one delta function will always encode the conservation overall external momentum.
6.3.5 Momentum space Feynman rules for S matrix
Recall the LSZ formula
out (P41 PnlP1s - Pk)in
n ' ‘ (6.36)
TL002 —m?) [ atareme [t emenson g (@] 7 (o) .. o)} D),
i=1
All the external propagators are cancelled (”amputated”).
All external momentum are put on-shell.
Example 6.11.
ot alp2) s = (<000 — ) (=)0} = ) [ s [ e
45 45 4 P . —ipo
;(ig)2/ (2:)14 / (d27f)24 / (3734 (2m)46W (5, — ]52)]5% 167:2 1+ i p%ze n: i i 67
. > —m?+ie(q—p1)? —m? +ie
" . .
- ;(19)2/ (5754 ¢ — frrzﬂ +ie (q — p1)21— m2 + i6(27r)45(4)(p1 ~p2).
We set
! ! (6.38)

it = i )2/ dq
o\ (2m)* ¢2 —m?2 +ie (¢ — p1)%2 — m2 +ie’
from S = 14T = 1+ it (2m)5D (3 pi).
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connected disconnected

Figure 6.1: Different type of Feynman diagram

Summary of the Feynman rules for S -matrix computations
1. internal line contribute m

2. vertices yield factor of ig.

3. external lines carry on shell momentum into the diagram.

4. momentum conserved at each vertex.

5. integrate over undetermined momenta.

6.3.6 The connected S -matrix

The S-matrix from process k — n: p; ... pf — p}, cees p? will generically have contributions from subpro-
cess of the type
k k;
L %p}“...p?l,
0 i 8 N (6.39)
pit..p;’ %p?l...p?l,
i.e. product of process k — @ for k < k and 7 < n. At the level of Feynman diagrams, these are

disconnected diagrams.

Example 6.12. See figure .

Such diagrams can be dropped if we are interested in the connect S-matrix.
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Chapter 7
Equation of motion for quantum fields

In Chapter [2] we introduce the Euler-Lagrangian equation

0ZL 0L

" 50,9 06 i

In QFT, by imposing canonical commutations, EoM for quantum fields leads to the same Feynman rules

for evaluating VEVs of time order product as previously.
7.1 Differential operators and .7 -product
In this section we explore the relation

Oy (A T {6(21) - 6(2a)} Q) > (A T {D6(a1) .. ()} ) (7.2)

where we ignore the in/out subscript since we use the |2) to denote the vacuum in the interacting theory.

The spatial derivative part is trivial. The thing that needs consideration is the time derivative part,

0c(Q 7 {d(x)p() } 12) = 0 ((Qf p(2)8(2") |Q) Ot — t') +(Q $(a”)p(2) 1) Ot — t)+)

)
= (2] 7 {0:p(2)$(2") } Q) + (Q p()p () 1) 6(t — 1) — (Q] p(2)$(2) |Q) (¢ — ') (7.3)
=(Q 7 {0id(2)¢(a")} 2) + (A [6(2), ()] |2) (¢ — t)
= Q| 7 {ap(x)d(2")} )
because [¢(x), p(z')] = 0.
7T {p(x)o(2)} 1) = 0, (| T {Oip(z) (') } |€2) =
9\9{5t2¢ )d(a") }192) + (Q [0 (), d(2")] [92) (¢ — 1) (7.4)
= (Q 7 {9 d(w)p(a) } ) — 6 (& — '),
where we have used the commutation relation [9,¢(x), ¢(z')] = —id®) (Z — ). We called the second term
—i6® (x — ') as the contact term.
= 0. (Q T {$(2)d(a")} Q) = (2| 7 {Dg(x)d(a') } 1) — 6™ (z — 2'). (7.5)
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By reduction, we have the following formula

Oz (2 T {d(2)¢(x1) ... o(n)} [Q) = (A T {DOd(2)¢(x1) .. p(an)} [2)

n (7.6)
— 215(4)(35 — ) (Q T p(w1) ... O(xim1)P(x)d(wig1) - .. p(wn) o [Q)
i=1
7.2 Schwinger Dyson equations
The Lagrangian of the real scalar field is
L= L0060 — S+ Lin(0), (r.7)
whose EoM is 5.2
(Oe + m?)p(z) — 8;“ =0. (7.8)
Combine it with the equation we have
0Lin
(Oz +m?) (Q T {p(x)$(@1) ... ()} ) = () 9{ 3¢t¢($)¢($1)---¢($n)} |€2)
n (7.9)

—iy 6W (=) (T da1) ... p(mio1)d(xi)d(wir) .. dlan) p |9D)

i=1

which is known as Schwinger-Dyson equation.

7.3 Evaluating VEVs of T-products in free theory via Schwinger-Dyson

equation

Take the two-point function as an example. In free case, the Schwinger-Dyson equation reduces to

(00 +m2) (0| 7 {6(x)é(a")} [0) = ~id® (2 — o) (7.10)

2

which is the equation satisfied by Green function of the operator 02 + m?2. For n-point function, the

strategy is
o The operator (02 4+ m?) action on n-point function reduces the number of fields.

e introduce that operators by involving our result for 2-point function, then integrate by parts.
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Example 7.1. For four-point function, rewriting as

(0 T {d(x1) ... p(24)} [0) = / d'z6W (x — 1) (0| 7 {d(2)d(w2)p(23) (1)} |0)
_ / d*zi(02 + m*) Dp(x — 1) (0] 7 {6(2)d(x2)d(23)d(w4)} |0)

_y / d'xDp (e — 21)(02 +m?) (0] 7 {$(x)$(x2)d(3)d(x4)} 0) 11)
— [ateDr(o — 1) (59~ 22) (017 {o(an)ian)}0)

+50 (@ — 25) 0 T {(wa)é@n) } 0) + 6D (@ — 24) (0] 7 {B(w2)d2)} 10))
= DF(xl — .Z'Q)DF(.%';; — .1‘4) + DF(xl — $3)DF($2 — .1‘4) + DF(xl — $4)DF($2 — .21?3) .

7.4 Evaluating n-point function in interacting theory via Schwinger-

Dyson equation

The strategy is the same as in free case. Now procedures leads also to terms with increased number of
fields due to the £y, term.

Example 7.2. 2 point function in ¢ theory, where Ly = %qﬁ?’.

(Q 7 {p(x1)p(x2)} ) = /d4935(4)(93—fr1) (Q T {p(x)p(22)} |€2)

= /d4ﬂfi(Dx +m?)Dp(x — 1) (9 T {p(z)p(22)} 2) (7.12)
- i/d4:pDF(x — 1) <<m s {a';’z"tqﬁ(xg)} 1) — 6@z — m)) .

Contact terms and LSZ

We have shown that
out (f]1);, = Z'/dA‘xleiplxl . .z'/dA‘xeip"x"(,ut (7 {(0p +m*)d(x1) ... 6O + M) d(20) } Q)15 (7-13)

where the red part is

(O +m?) ... (Qa + M )out (U T {($(x1) - plan) } |y
+ terms involving § function 6 (z; — xj) multiplying (7.14)

time ordered produce of fields independent of x; and z;,

which give rise to the contributions
/ d4xi/ djet®irie= it 60 (o — 25) = 6 (p; £ p;) (7.15)
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where

+ : both outgoing or incoming, vanishes as p; ; > 0 (7.16)

— : one incoming, one outgoing, trivial scattering process, p; = p;, excluded in our analysis.

This analysis tells us we can drop the additional terms as claimed (case of p; = p; requires further

reasoning.)
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Chapter 8

Irreducible unitary representations of

the Poincaré group

8.1 The Poincaré group &, as a symmetry of fundamental interactions
The inhomogeneous (full) Poincaré group is
2 =R'MO(1,3), (8.1)

where R* represents the translation # — x4+ a and O(1, 3) is the Lorentz group of all linear transformation

of R* that preserves the Minkowski metric. The multiplication rule and the inverse are

(a,S) 0 (b,T) = (a+Sb,SoT)

(8.2)
(a,8)7' = (=5"ta, 571,
O(1,3) has several components, we will require that
Py =Rx S01(1,3), (8.3)

where SOT is proper orthochrous Lorentz group, which is a connected component of group O(1,3). It

containing the identity. In particular, timer reversal 7', space inversion P in this subgroup.

8.2 Wigner’s theorem and Bargmann’s theorem

Physical states are associated to rays, i.e. element of 57 up to phase. The space of rays is denoted as
# = /N where N is the equivalence relation: for ¢,¢ € H#, ¢ ~1p <= 30 € [0,27), ¢ = 9.
Recall that given r, 7' € #, transition probability P from r to r’ is independent of choice of representations.
P = |{¢'|¢)|? for any ¢,¢’ € A such that [¢] =r,[¢/] = r.

Definition 8.1. % is a symmetry means that for any element of Py gives rise to a map £ — X, which
preserves probabilities, i.e. given g € Py, 3T(g) : Z — X such that for r,v’ € X,

| {r|r") |2 = (T (9)r|T(g)r') |7 (8.4)
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Theorem 8.1. Wigner’s theorem: Any bijection % — X which conserves the transition probabilities of

uni rays can be represented by an operator on € that is either

1. linear and unitary

2. anti-linear and anti-unitary, i.e. U(€|@) +n ) = U |¢) + U [¢) (anti-linear), (Up|U) = (¢|1))

(anti-unitary).

Remark 8.1. Symmetries connected continuously to the identity (such as rotations, element of SO'(1,3))

must be represented by linear unitary operator because the identity is linear and unitary.

Given g1, g2 € Py acting with U(g2)U (g1) or with U(gy 0 g2) should give rise to the same physical state,
which means that U(g2)U(g1) = €'?(91:92)U (gy0g1). We conclude that 2 must be projectively represented
on J7.

Theorem 8.2. Bargmann’s theorem: Every projective representation of the universal cover P, of Py can

be lifted to a unitary representation of P.

This theorem tell us that 5 should furnish unitary representation U of Py. ie.

U: Py — Aut()
(a,A) = Ula, A),

such that U ((ag,AQ) O (al, Al)) = U((ZQ, AQ) o U(al,Al).

8.3 Particles

A can be decomposed into eigenspace with respect to a maximal set of mutually commuting operators
(including H, P). Let |4) lie in such an eigenspace (in particular P*[¢)) = p#[¢)). In our definition
of particle, |¢) and U(a,A)|y) should not correspond to different particles, which guides us to study

irreducible representation of P,.
Definition 8.2. The subspace F C & is irreducible if

e it is invariant under action of Hy.

o no proper subset of 7 other than {0} has above property.

8.4 The representation of spacetime translation
The spacetime translation can be represented as
Ula,1) = ' pt = (H,p). (8.6)

We can see that p* is self-adjoint, which means that we can diagonalize the Hilbert space ¢ as ¢ =
@ Vj, where Vj is the eigensubspace labeled by spatial momentum p. Let [p) € Vj, (|p)) is a irreducible

representation of spacetime translation. The action
Ula,1)[p) =P |p) = (|p)) is closed under the action of Uf(a, 1).
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The fact that irreps (irreducible representations) are one dimensional follows from the theorem that complex
irreps of Abelian group is one dimensional. As we can decompose any element of (a,A) € Py as (a,A) =
(a,1) 0 (0,A), we can focus on the spacetime rotation U(A) := U(0, A).

8.5 Unitary representation of the Lorentz group via Wigner’s method

of induced representations

Theorem 8.3. The only finite dimensional unitary representation of the Lorentz group is the trivial

representation.

Example 8.1. Consider the 4 vector representation, the Lorentz boost along the x axis takes the following
form,
cosh fx sinh Sx

Ao sinh Bz cosh Bz

however, ATA # 1, A is not a unitary matriz.

The method of induced representation (Wigner)

The strategy is

1. study a subgroup (called the little group) of the Lorentz group which does have finite dimensional

representations.
2. lift these representations to the full Lorentz group, which is so called the induced representation.

In physics, we are interested little group HF. For m > 0, choose the momentum k* € R* such that
ktk, =m? and k¥ > 0, we define HY, as

HF = {A € SOT(1,3)|A" k¥ = kM), (8.8)

which is the set of the spacetime rotation keeping the four momentum k* invariant. It is easy to verify it
is indeed a subgroup of SOT(1,3). Physically, m will correspond to the mass of the particle, k is its four
momentum. We begin our discussion by considering momentum eigensubspace of J# with momentum k&
and m > 0. A convenient choice is the particle at rest: k = (m,0,0,0). Obviously the little group is
Hr(nm,O,O,O) = SO(3), because only boost can generate 3-momentum. Since the little group is now SO(3), its
double cover is SU(2). The irreducible representation of SU(2)is classified by non-negative half-integers
or integers J € iN U {0}, which is so called the spin of (2J + 1) representation. If we restrict J € N,
actually it is the irreps of SO(3). A state transforming in the representation J of SU(2)carries an index
o€ {—J,...,J}. We denoted as |¢/y ) such that p* [{b,) = kM [tk ). For two rotations Ry, Ry € HF,,
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because

J
U(Rl) |¢k,0'> = Z D(Rl)a’o ’wk,a’>
o'=—J
J
U(RQ) (Rl) |wkcr = ( Z Rl O’O’ ‘wka ) Z Z Rl O'O' )U”J’ , ”> . (89)
[ ol=—Jog!'=—]
J
= ) D(Ryo Ri)gor [thron) = U(Rz 0 Ry) [t0) -
ol'=—J
Note that DT(R)D(R) = 1 as the irreps are unitary. We finish the first step of the strategy.
Next, for any p € R* such that p? = m? for a fiducial Lorentz transformation L(p),
L(p)", k" = p". (8.10)
Define |9y, 5) = U(L(p)) |¥ko). |tpeo) is @ momentum eigenstate as
Ula,1) [¢po) = Ula, U(0, L(p)) [$k,0)
= Ula, L(p)) [tr.0)
=U(o, L(p)) ( '(p)a, 1) [Yk.q) (8.11)
= U(L(p))e'" P Jghy o)

LD [y )

)

where (-,-) is the Minkowski inner product and we used the multiplication rule to extract the result. We

conclude that the subspace

{|po) p €R 2 =m?,p" > 0,0 € {—J,...,J}}), (8.12)

furnishes a unitary irrep of &2,

1. U(a, 1) sz) = ¢laP Wp,0>~

UA) [¢p,0) = UMU(L(P)) [¢r.0)
(L™

— U(L(Ap)U (L™ (Ap))U(AL(p)) [r.0) (8.13)
— U(L(Ap)W (A, p) [0

where we define W (A,p) := U(L~*(Ap))U(AL(p)) which maps the momentum k — p — Ap — k, then
W(A,p) € Hff1 From the previous discussion, using that conclusion that

W (A,p) [¢k0) = Z D(W (A, D)oo |¥r00) (8.14)
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we can write

J J

U(A) ‘wp70> = U(L(A,p)) Z D(W(Aap))a’a }wk,a/> = Z D(W(Aap))o’a ‘wAp,a"> . (815)

S

o'=—J o

It is easy to check that under this definition U(A1)U(A2) = U(A1A2).

Remark 8.2. We can see that through this way we could introduce the spin indices naturally and the spin
degrees of freedom naturally separate with the momentum (spacetime) degrees of freedom. The representation

theory shows its strong power again.

Theorem 8.4. This representation is irreducible.

Proof: The proof is direct because of the definition of the coefficient D(R).

Remark 8.3. The representation space <{\wp’g> peRY, p>P=m? p*>0,0€{—J,..., J}}> is infinite

dimensional.

We can introduce an inner product on the representation space via

<wp,a|¢p’,a’> = (271')32(,017(5(3) (ﬁ_ ﬂ)éaa’ . (816)
We need to check if such an inner product is Lorentz invariant. Consider

5V (p—p') = 8(p° — Vm + 528 (5~ §)

(8.17)
= 2p°5(p* —m*)0(p*)6") (7 — )
From equation (|1.27)), we know that the invariant measure is

Py
N

For the three dimensional delta function, we define it by

(8.18)

F(f) = / F@)0D G- ), (.19)

this guides us that we could define the so called invariant delta function under the Lorentz transformation

as
ViR +m20@ (G - ) = V(AR)? + m20®) (Af — A) (8.20)

= 2p°%60) (51— ) = 2(Ap) "6 (Ap — AF) . (8.21)
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We then check if such an representation is unitary,

J

U)o [UAWopars) = D D WA D))o DIV A 22, (Vg [ Vo)
ol ,0h=—J
J
= Z D*(W(A’pl))aimD(W(A?p?))aéUg (277)32(1\])1)05(3) (Aﬁl - AﬁQ)éaia’Q (8‘22)
o, 0h=—J

J
= Y D(W(A,p1))ow; DIW (A, p2))oe, (2)32p°63) (51 — fa) |
o=—J

by using the unitary of the D matrix, Eg:_J D*(W (A, p1))oc, DOW (A, 02)) 00y = 05,04, We conclude that

<U(A)wp1701|U(A)¢p2,Uz> = <¢p1,01|7f}p2,02> ’ (823)

representation U(A) is indeed a unitary representation.

8.6 Transformation of free creation and annihilation operators

Recall that af(p, o) |0) = \/ﬁ |p,o) = ﬁ ¥p.o). The transformation of af follows from that of w; o

We assume that the vacuum is Lorentz invariant

U(A)[0) = |0) . (8.24)
The transformation of [t),, .,
J
U [¥po) = Y DW(A,P))oro |¥r50)
o'=—J
J
= V2,UMN)al(5,0) U (A) = /20, Y D(W(A,p))orea’ (D, o)
o= (8.25)
= U (.U (M) = [ 522 S DIV (A, p))oroa! (Ap. o)
P ogi=—J
J
= UMalpo)U (M) = | 222 S DA (WA, p)oroa(Ap, o)
P o=y

8.7 Transformation of free massive scalar quantum field

The scalar representation is spin J = 0 representation of SO(3), the D matrix
Dyp(R)=1 = can drop the o index.
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The scalar field constructed by a and a' is

(8.26)

where we have used the property of the invariant measure. This is the first important result, we get the

transformation property of the scalar field compatible with the Lorentz invariant theory.

8.8 Construction of massive vector field

8.8.1 Objective and Ansatz

Objective: construct a quantum vector field A#(x) such that

UM A*z)U Y A) = 2(A 1" AY (Ax). (8.27)
Remark 8.4. Pay attention the notation here, D is the representation of little group H , and 9 is the
finite dimensional representation of SO(1,3).
The group structure requires
U(A)U (M) AH(2)U(ASHU (A = 2 [(AlAg)_l}“p AP (A1 Agz) . (8.28)

Remark 8.5. The fields are not constrained to transform in unitary representations.

What type of particles should A* package? A natural choice is the spin 1 (J = 1) massive particle.

At (z) = / @p \/L Z ( p)apce—ipr + e, *(p)a;(,eipx) , (8.29)

I

where ", is the polarization tensor and the conjugate in the second term is to make the field Hermitian.

We will show what is the requirement of the polarization tensor should satisfy in the later discussion.

8.8.2 What property do the function ¢*_ (p) have to satisfy?

Our goal is that
UNA*(z)U YA = 2(A 1" AY (Ax), (8.30)
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putting the Ansatz into the equation, and recall the transformation property of a and a',

U(A)A* () U1 (A) = / @p 1 Z [ Nap U (A)e " 4 et _*(p)U(A)al ,UL(A)e?"

\/7 Ko o D,0
d*p \/2wap

=@ 2, 2 @D (WA Py e

+e" () Dgro (W (A, p))aj\p o e%pz]

_ d3p 2w . N .
=@ 1)MV/ (2m)3 2w - {gua(p)ap,ae ke +e% (p)a;rwelpAz]
p

5—A—1 _ d?’ﬁ WAR T, B e U ows < .
=P g(A 1)%/ 35 {5 o(Ap)anpoe " + ", (Ap)ajxﬁ,aem} '

(27r) 2(,0}'5
(8.31)
Compare the two sides of the equation, we have
S DL (WA, p))e,y( Z@ "y 0 (AD) - (8.32)

Pay attention about the position of ¢/. We split this relation in two steps:

1. Note that £, (k) fixes e, (p) as we could choose A such that Ap = k = A = L~!(p). Based on the
definition of W

W(A,p) = L(Ap)~'AL(p) = W(L (p),p)=L(L ' (p)p)"

* € v 833
= DLW D) = 3 betts (0) = () = S D)), () (8:33)
2. Derive the relation for e, (k): we choose p =k, A = p € HF
W (p, k) = L(pk) ' pL(k)p,= ZD* Z 2(p7") pk)
(8.34)

> D! (p)et, (k Z@ Ly el (k).

The claim 1 and 2 is equivalent to the equation of & ([8.32)).

Remark 8.6. The condition as well as the equivalence (1,2) hold for all 9, which is the finite
dimensional (non unitary for 9 non-trivial) irrep of SOT(1,3) under which the quantum transforms. And

D is the finite dimensional unitary irrep of HY under which the states transform.

8.8.3 Solving the constraints on ¢* (k) for massive vector field

By using the unitarity of D, we have D:E,J,(p) = D(p~ 1)y, the relation l is
Y B)D(p Voot =D D™ ) o (R) (8.35)
g 14
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D matrix is 3 x 3 matrix, while 2 matrix is 4 matrix, which requires that ¢ is a 4 x 3 matrix with 4

spacetime indices and 3 spin indices, setting

a b c

e(k) =
A3x3

(8.36)

Remember that we are now considering the massive vector field with four momentum &k = (m,0,0,0), the

element p should keep the time component invariant, which means that the & matrix can be written as

P(p~") =

L
BT ] : (8.37)

The relation expressed in matrix notation is

: (8.38)

such a relation holds for arbitrary p € SO(3). Notice that the spin-1 representation for the little group
HE is the same as SO(3) representation, which means that D(p) = ®(p), in this condition, the relation of
¢(k) can be written as

a b c

DA (8.39)

e(k)D(p™") = Z(p~")e(k) = [

Since this relation holds for all p € SO(3), we consider the infinitesimal transformation. The infinitesimal

rotation around z-axis and z-axis are

1 1 —e
D(pz) = 1 —e|, D(p:)=le 1 , (8.40)
e 1 1
which gives
b Loo b+ b+ b
e®)D(pa) = " 7 o1 —e| =" 7T TTg 0T (8.41)
A 0 ¢ 1 AD(pa) D(pz)A

we conclude that b = ¢ = 0. If we choose p = p,, we can see a = 0, so the effective part is A. This tell us

that
(m 00 0 (0 j 0) —0 (8.42)

ket (k) = 0. (8.43)

. The more general formula is

Here the proof is not strict and general, though the conclusion is correct. The left relation is AD(p) =

AD(p) for all pin SO(3). Based on Schur’s lemma, the solution for A must be proportional to the identity.
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8.8.4 What is ¢ mathematically
The equation satisfied by &, (k) is

Y Do (W(Ap)es(p) = > PN (Ap),  Vp € HY,. (8.44)

Consider
o group G representation (V, pg) such that pg : G — Aut(V)
o subgroup H C G with representation (W, pg)

e« amap ¢: W — V, called the equivalent map (or an intertwiner) if for h € H, the map commutes:

w2y
pH(h)l lme(h) Jde. pelpod=dopy. (8.45)

w2,y

In fact € plays the role of ¢, which relates the spin space and the spacetime coordinate space. Explicitly,

let {v;} be a basis for V. {w,} is a basis for W. The equivalent equation can be written as
[pG(h) - pG Z ¢w¢vz Z ¢wch Z ¢wz PG ]Zvj

— (60 pur(W)]wa = ¢>Z pr1(h)]paws = Z[pH( )]ﬁa¢jﬁ”j (8.46)
67

= ZPG )jiGia = Z ¢ispe(h)sa
{ B

Hence when does ¢ exist is equivalent to ask when D and ¥ HE, be intertwined. By representation theory,

let (W, pw) be an irrep of H, decompose V' into irrep of H
V=Vi®...oV,, p:Vi>V,YVheH. (8.47)

For a non-trivial intertwiner ¢ : W — V to exist, py must occur among the p;, say p; = py, V; = W.

Example 8.2. G is reducible 4-vector reps of SOT(1,3), V =R*, as
V=R'*=R@R?, (8.48)

where the 1 dimensional space is the time component invariant under the group SO(3), R3 is the spatial
component that transforms in spin-1 rep of SO(3). We conclude that it can package spin 1 fields using

massive vector fields and also the spin 0 fields.
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8.9 Massless vector bosons and gauge invariant

8.9.1 The little group at m =0

Convenient choice of k for k? = 0 to define the little group is k = (£,0,0, F),
HE = {A € SOT(1,3)|AH k" = k*} = ISO(2), (8.49)

which is the group of isometries of the Euclidean plane I50(2) = R? X SO(2). This group contains two
Abelian subgroup R?, corresponding to the translation S(a,3) € R?, and rotation R() € SO(2). The

rotation R € SO(2) around z-axis can be represented as

1
0 in 6
gm0 = 0 (8.50)
—sinf cosf
1
. The translation can be represented as
1+§ o B =€
10 - 24 2
NS (0 5) = | S IRt (851)
I5} 01 -p 2
§ a p 1-¢
Remark 8.7.
R(#)S(a, ))R71(0) = S (arcos @ + Bsinf, —asinf + S cosb) , (8.52)

i.e. R% is a normal subgroup of ISO(2).

We can study the reps of R? and SO(2) separately and then lift them to I.SO(2). The fact that (follows
from Remark any non-trivial representation of R? lift to an infinite dimensional representation of
ISO(2). Such representations would imply a quantum number corresponding to an infinite number of
degrees of freedom in addition to momentum p, which is not observed. Hence, we restrict ourselves to the
representations of ISO(2) which restrict to trivial reps of R%. Finite dimensional irreps of SO(2) is one

dimensional since SO(2) is Abelian, labelled by o € Z, which gives

D(R(9)) |¥r.0) = €77 |¥p0) (8.53)

where we will show later that for double cover of SO(2), o € 1Z. Overall

DW (0, B)) [thr.0) = D(S(v, B) 0 R(0)) |[thr.0)

» » (8.54)
= D(S(ev, B))D(R(0)) [¢or,0) = D(S(ev, 8))€"7” [th.0) = €77 [thio)

where the have already used the conclusion that the representation of S(«, ) is trivial. Defining |, 5) =
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U(L(p)) [¢k,s), we can see that

U(A) [tp.a) = UMU(L(p)) ko) = ULAP)U (L™ (Ap)U(AL(D)) [vk,0)
= U(L(Ap))D (W(O(A, p), (A, p), B(A, p))) [Vk,o) (8.55)
- U(L(Ap»eiae(mp) ‘wk,zf) - eia@(A,p) ‘wAp,U> :

The quantum number o, specifying SO(2) irrep, is called the helicity. Unlike the 2-component of spin, it
is Lorentz invariant. It is similar to spin projected onto direction of motion, but Lorentz invariant. While
the irreps of SO(2) are one dimensional, parity maps o — —o. For interaction that preserves parity, such

as QED, we consider |9, +,) as describing the same particles.

Example 8.3. Photon has 0 = £1.

8.9.2 Transformation of df ,, a,,

Following similar procedure as in the section , we have

\/2 .
U(A)a} , UL (A) = Y222 iob(A)gf

p?o—

(8.56)
-1 V2WAp _ivo(Ap)
U(AN)ap U (A) = e P ap . o
\/ 2wp
8.9.3 Construction of massless quantum field
Massless scalar field
o = 0, via the same calculation as in the massive case, the Lorentz transformation of the field is
U(N)p(x)UH(A) = ¢(Ax). (8.57)
Massless vector field
We expect this to describe particles of helicity o = +1. As we constructed before,
Al — / d3p 1 Z [6“ (p)a Ue—ipx + e *CLT eipT (8 58)
(2m)3 /2w, = NP o Yo ) .
we need to find € to let
U(MNA* () U YA) = 2(A~H# AY (Ax) . (8.59)
Consider decomposition of 4-vector rep. into SO(2) irrep:
C'=Co@C®C_1®Co, (8.60)

where C* is the 4-vector rep. of SOT(1,3), Cy is the trivial rep. , C, is the o = +1 irrep, C_; is the

o = —1 irrep. and Cy is the trivial rep. again. We need to lift these representation to the representation
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of ISO(2) on which R? acts trivially. Explicitly, for

1 0 0 0
0 1 1 0
C'=Co®Cy1®C_1®Co= a(| |)e |1)e : (8.61)
0 1 —1 0
0 0 0 1
A simple choice of the polarization tensor is
0
1 1
el =—= 8.62
+ \/i +i ( )
0
such that the diagram
w25V
pH(h)l lpg\H(h) ) (8.63)
w25V
commutes for H = SO(2). Explicitly,
0
1
W — .
+1
0
pm(0) pc(0) - (8.64)
0
+1i0 =1 1
e wy —— e
+1
0
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All available choice has been made. Consider RZ <1 ISO(2) = R? X SO(2), the representation restricts on

R? is trivial representation, however, it is not trivial when lift to the group 150(2),

0
1
wy ————
+3
0
o (S(0.5)) 20
0 14+¢ Q@ B —£ 0 atif
1 a 1 0 - 1 1
w4+ — 75 =
+i 8 0 1 -5 ||+ +
0 13 e B 1-¢ 0 atp

(8.65)

This seems tell us that we cannot construct a massless vector filed out of helicity +1 creation/annihilation

operators. Where is the wrong? This is a very important and interesting question. Let’s choose

0
1 1

ex(k) = — ,
0

D(R(9))ex (k) = e (k)

E
1 10
D(S(e M)exk) = ex(k) + (i) 5 | |

E

and define ", (p) = L(p)",€”,(k), where we drop the Z to keep the equation clean.

U(A)A*(@)UTH(A) =

(8.66)

(8.67)

d3p 1 2w » . . ) )
[ G % [l M )]
o==+1
p=Ap BPAp \2wp o A—1x\ icO(A,A"1P) —iA"1pa bk A—1= icO(AATIP) t ATl
2 [ ey 2 [ a7 A ] ]

60

(8.68)



We need to evaluate e(A~!p),

eo(A™'p) = L(A™'p)eg (k) = A L(p) L(p) "' AL(A™'p)ey (k)
= AT L(p)W (A, A" p)e, (k)
= A"'L(p)S(a(A, A 'p), BN, A7 p))R(O(A, A" p))es (k)
o X (8.69)
= AL o)+ (a8 n ]

—1 _io - 1 ]
— A 1e 0(A,A lp) |:€o—(p>+(a+lo-ﬁ)(/\,l\lp)p:| .

V2E

Substitute it into the equation (8.68)), the expression becomes

1 dBp 1 i(A—1
—1\p gv —1_\H ; —i(A™'p,)
(A () + o | v SEED I (CEL OISR

o==+1

+(a —ioB)al, Uei(Ailp’m)] (8:70)

= (A1 AY(Az) + 0" Q(z, A),

The gauge transformation appears naturally! Magic! If a Lagrangian <7 () with an action is invariant under
1. A(z) = A tA(Ax),
2. A(z) = A(x) + 0w,

such a Lagrangian will lead to a Lorentz invariant theory. The quantum field we have defined satisfies the

following quantities

d3 1 —1ipx * 1pT

OA*(x) = D/ F E ( p)apqse PT e, (p)a;(,ep )

:/ d3 2 § : ( ap’ae —1ipT _|_€p *(p)a;ﬂeipa:) — 0,
F

(8.71)

where we used the massless on-shell condition. For the polarization tensor ey (k) = % (0,1,44,0)7, ex(p) =
L(p)e+(k), where L(p) can be chosen as the combination of spatial rotation and boost, L(p) = R(p)B(p),

where R(p) is the rotation of z-axis into p’ direction and B(p) is the boost along the z-direction, such that

B(p) , (8.72)

p
0
0

oo

pO

this gives €4 (p) = R(p)e+(k) at t and z component of €4 (k) vanishes. The rotation of z-axis doesn’t

change the time component, then we have

= @) =<l =0. (8.73)



Notice that we derive k,e's(k) = 0 before, now we have

D Fei(h) =0 = > REHFRE"Lk) = 5eb(p), (8.74)

i 1,5,

where k' is the i-th component of the unit vector and we used the orthogonality of the rotation matrix. In

conclusion, we have the two following conditions,

A(z) =
V-A=

I

0
(8.75)
0.
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Chapter 9

Lagrangian involving a massless helicity

1 particles

9.1 The photon without source

We use A* to construct a Lorentz invariant theory. It is equivalent to say that we need to write down a
Lagrangian invariant under the transformation A* — A* 4+ O*w. We further require that there exists a

gauge choice such that A" satisfies the property above. A natural guess is

1
£ = _ZFMVF;UM (91)

which is called the Maxwell Lagrangian. The gauge invariance is obvious since F),, = 0,4, — 0, A,
=  Ou(A), +0w) —0,(A, + 0yw) = Fyy . (9.2)

9.1.1 EOM
The Euler-Lagrange equation with respect to A* gives

0.8 0%
B o 9 FM = —0,(0MAY — Y AM) = —OAY + 079, A" . .
Ougiona ~ oA, = O 9,,(0 O AM) = —OA” + 070, (9.3)

9.1.2 Gauge theory

Given a solution A, (z) of the EoM (9.3), A, (z)+ 0,w(z) also solves the EoM. The physical interpretation
is that A,(z) and A,(x) + Ouw(x) are locally equivalent, but it should not be confused with a global
symmetry. We can choose w(z) (i.e. representation of gauge invariance class conveniently). This is called

the gauge fixing.

Coulomb gauge V- A=0

Claim: given an A", we can choose a gauge such that V - A=0.
Proof: Let A be the field after gauge transformation A* = A* + 9w

A = (A +0'w) =0, = —Aw=-9A", (9.4)
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which is the Poisson equation and it can be solved for reasonable A’.

Remark 9.1. Imposing V - A does not fix gauge freedom completely. V - A preserved by w which satisfies
Aw = 0. This is called the residue gauge degrees of freedom.

The EoM in Coulomb gauge is

0=0A4"— 9" (8() + &Al) = 8080140 + 8181140 — 8080140 + 6081141

=0,0'A" = —AA°. 05)
0=0A" — 99,04 '
=0A" — §'9A°.

We can use the residual gauge symmetry to simplify further. Suppose A0 = A0 4 §0% = 0, 9% = —AO,
w——/AOdt, Aw-—/AAO_O, (9.6)

where the last equal holds because of the EoM. It is compatible with the Coulomb constraint. The EoM
becomes A” = 0 and OA® = 0. These are the equations satisfied by quantum field.
Lorenz gauge

The Lorenz gauge, or the covariant gauge, is
G AP =0. (9.7)

Given a solution A*, 9, A = 9, (A" + 9"w) = 0, the condition is Ow = —d,A*. In Lorenz gauge OA* = 0.

9.2 Coupling photons to sources

9.2.1 The gauge covariant derivative

A naive proposal for the coupling (or the interaction) part is A, f(¢). However, it is not Lorentz invariant.
Another guess is A, f(¢)0"$, however, it is not gauge invariant. The Strategy to fix this problem is to let

¢ transform as well. A natural choice is ¢ — e~@®)¢:

e by reality of Lagrangian, all terms not involving A* or 0" ¢ will be invariant under this transformation.

o Ot Iu(e™ ) = —iwe ¢+ e, ¢ is the right form to cancel the gauge variation of A¥

O +iA) = [0 +i(A, + 0uw)] (e ¢) 0.8)
= (0, +iA.)¢ + e (i0 0yw) ¢ |

We can define the gauge covariant derivative D, ¢ = (0, + iA, )¢, which transforms in the same way as ¢
under the gauge transformation. Coupling ¢ to A* by replacing all d,¢ by D, ¢ yields a gauge invariant
Lagrangian,

D0t — %m2¢2 — D, ¢DV¢ — %ngbQ , (9.9)
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which is called the minimal coupling.

9.2.2 The notion of electromagnetic charge

If there are N different species of fields, denoted by ¢,,, and we slightly generalize the gauge transformation,
Pn(x) = @ e(z) (9.10)
where @), is the charge of the scalar field under A¥. The covariant derivative changes
Dyn(x) = (O — iQnAy) dn(x) - (9.11)
We introduce electric charge into the formalism by considering

1
Ay = Ayt S0

=  Dud(x) = (0, —ieQnA,)d(z),

(9.12)

then @, keeps track of the interacted strength.

9.2.3 Mathematical view
Two parts:

e Dropping the spacetime dependence of w. The gauge transformations forms a group G. The charged

fields will be in a representation of a group G.

Example 9.1. For electromagnetism, the gauge group is G = U(1) = {z € C||z| = 1}. The
electromagnetic field is the one dimensional irreps which are indexed byn € Z, €' s ™ € GL(1,C).

o Spacetime dependence of w. How to take derivative of ¢(z) when its spacetime variations are partially
gauge? We need to distinguish between variation in spacetime vs. in gauge group direction. And we

need to choose a suitable connection of A*.

9.2.4 The Lagrangian of scalar QED

The Lagrangian is .
L= _1FWFW + D,o(D*¢)* — m*¢po* (9.13)

where the gauge covariant derivative is D¢ = (9, + ieA, )¢ with charge —1. The Lagrangian is invariant
under the transformation 1
Ay — A+ —0uw
e

A (9.14)
¢—e 9
9.2.5 Anti-particle
Recall that ¢ and ¢* can be treated as independent degrees of freedom.
(Duo)* = (0, —ieA,)o". (9.15)

65



The opposite sign here guides us to introduce the states of opposite charges. The creation and annihilation
operators are
ap, a}, : [akja;f,] = (27)36®)

(k- )
by, b © by, B5] = (2m)360) (K — (9.16)

0,

where b)), b;r, are creation and annihilation operator for states of opposite charge and we called they are
anti-particles. Different particle type, their creation/annihilation operator commutes: [a;,b,] = 0. The

fields are

d3p 1 —1ipx ipT
d)(x):/ (2n) /2w (ape " +8je™)

Iz
* _ d3p 1 T ipx —ipx (917)
o) (m)/(%r)?)m(apep + bpe p)

wp = VP2 +m?.

The particles and antiparticles have the same mass and both have positive energy. Combining quantum
mechanics and special relativity implies the existence of anti-particles.

In summary, the route of this chapter is quantizing photons (defining a massless quantum vector field
for helicity +1 states) — gauge invariance (with gauge group U(1)) — necessity of complex reps — the

existence of anti-particles.
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Chapter 10

Scalar QED

10.1 The photon propagator (Coulomb gauge)

The photon propagator

(0 7 {A*(2)A"(y)} 0)

d3p d3 1 1 O\ i(—pat
e e 20 — )P W) (0] ay pal , 0) e, (p)e” " (p)
;gglagzilj/ 2wq[ !

+0(2” = ")) (0] g pra, 10} ¥ < o (q)]

d3p d3 1 1 0 0y i (
— 0l —pz+qy) (0] [ap.o GT,U] 0) e, (p)e” 5" (p)
"% 5w m[ |

+0(a” = )P (0] [ay 01, a} 110} ", "< o (a)]

Z Z / d3p d3 1 1 [ 20 — )l Pr+aw) (27)353) (5 — @500t (p)e” . (p)
o=*x1lo/=+1 V/Agi\/iag

+6(2° — 3")e W*qy)( 72507 — P)roe" s e (g)]

(10.1)

> / 27)3 20.) S (D)5 ()P0 — 1) + &, ()ey (p) PO — )]
o==%1

We need to evaluate the summation Y "5 (p)e”, (p), using the discussion before e4(p) = R(p)e+(k), we

have

S e, () = 3 R (DS, (RPN, (k). (10.2)

o==+1
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where R(p) is the rotational transformation that rotate k into p. Recall that we have the expression of

£y = %(0, 1,+i,0)T, then
r KA
0
14 v 1 12 v 1 .
Do) =5 3 FLORA®) || | (01 i 0)
o o==1
[\ 0
KA
0 0
-y mere| L
- 2 o==+1 WP A ol 1
0 0
KA 10.3
0 9 (10.3)
= R (D) RY,\(D)
0 0

KA
0 -
= R (D) R"5(P) (W) for k=(0,0,E)"
BLE

N puv
R(pk=p [ O _ pw
- 5 _ pp’ - ’

[p|?

though it seems that the calculation relies on the choice of k, we claim that it is true for all k. Now the

integral becomes

= / (;l 2)93 2ip#v(p)em(fr—y) [e—zwp(zo—yo)@(gcﬂ — %) + @) (0 — 20 | (10.4)
™ Wp

where we use the integral property: the e (=% integration will be same. Noticing that

iw(x0—y°)
(291 @ (10 _ 10} 4 r (@10 g0 _ 10y — _ 2P s / dwe 10.5
e (2" —y") +e (" —2") = —5 - lim e (10.5)
with wg =2 +m? =p%, w? — f, = p?. Combine the integration, we have

40 i PHY A
d’p Mew(w—y) ) (10.6)
(2m)% p? + e

(0] 7 {A™(x) A" (3)} |0) = /

We extract the momentum space propagator

4§ P ) 4 )
017 (4@ w0 = [ 5k D) i) — [ e ),

(2m)t p? + ?';W( | (2) (10.7)
i (p) = ZpQ -
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Derived via path integral), II*¥ in covariant gauges are
p g gaug

w1 _ g\
P2+ ie ’

™ = —

where £ corresponds to a choice of covariant gauge. Because this is a gauge choice, it must be dropped out

of the final result. We then have two options in the later calculation,
e keep &-dependence in the calculation.
o fix £ value.

1. £ =1, Feynman gauge

I = — .
i e (10.9)
2. £ =0, ’t Hooft gauge
— g - p;;;v 10.1
P+ e
10.2 LSZ for scalar QED
10.2.1 complex scalar field
Recall that the proof of LSZ is based on
i [ dizei™ (04 m?)p(r) = /2oy (ap(00) — ap(—o0)) |
(10.11)
=i [ atae (04 m2)o(w) = 2 (B)(o0) ~ B(-00)) |
analogous relation for ¢*(z),
—i/d4xeip‘”(D +m?)¢*(x) = /2w, (aL(oo) — ajo(—oo)) ,
(10.12)

i [ e (04 w6 (2) = /By ((00) — by(—o0))

from these expression, we justify

e ¢(x) insertions yield incoming e (anti-particle, modes created by b;r,) and outgoing e~ (particle,

modes created by a};).

e ¢*(x) insertions yield incoming e, outgoing e™.
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10.2.2 Massless vector field (gauge boson, vector boson, photons)
The LSZ for A* is

i [ daeroane) = Va3 1) ape(00) ~ tpa(~50)

o=%1

—i/d4xeimDA”($) = /2w, Z et *(p) (a;rw(oo) - a;:p(—oo)> .

o==+1

(10.13)

We want to project onto a particular helicity of the external state a;rw |0). Recall that e = %(0, 1,44,0)7,

we have
el (k)eyq (k) = —1,

b (k)ef (k) =0,
(k) (k) (10.14)
ey (k)e g™ (k) = =007

ex(p) = R(plex(k) = &5 (p)eo” (P) = =00,

Project onto particular helicity,

i / 2T, " () A () = \/2dp [y (00) — Gy (—00)]
| (10.15)
—i [ dtae 0 e, o (6) AM(a) = /By [ (00) — a o —o0)

This tells us
s —¢,,(p)A"(x) insertion yields incoming particle of momentum p and helicity o.
o —€,,"(p)A*(x) insertion yields outgoing particle of momentum p and helicity o.

In Feynman rules, incoming particle comes with a factor of —¢, ,(p), outgoing with a factor of —¢J, ,(p)

with a contraction over p (with the p index of P occurring in the photon propagator).

Remark 10.1. Signs will cancel in | {f| S |i) |, so we can choose +&",,+e",* instead.

10.3 Ward identity

From our analysis of quantum fields, £*(p) ~ &*(p) + ¢p*. Writing an amplitude involving an external

photon as
M = e, (p) M = (D) + P My = pud" =0, (10.16)

which is the Ward identity. We will consider this identity in the learning of path integral. From now, we

will see that this holds in special examples.
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10.4 Feynman rules for scalar QED

10.4.1 Incoming, outgoing particles

e Incoming photons:

1 =&, (p)
—>
p
e Outgoing photon
po=e's(p)
R
p
e Incoming e~
- —-Pp----
—_—
p
e Outgoing e~
——-P— -
R —
p
e Incoming et
- - -d4----)
—
p
o Outgoing e™
---4----e
_—
p

where all the dots represents the external points.

10.4.2 Propagators

Suppose Y1 and 9 are two fields and there propagator is

017 rlonabo) = [ 2emeng),
e Photon ,
z’HWZPQHE [g“” (1 é)p;f } = B
p
. Scalar field ,
illg = 22— 722 Tie ¢* () %’ o(y) -

« The propagator (0| 7 {¢(x)é(y)} [0) = (0] 7 {¢" (x)$" (y)} [0) = 0 as [ap, by] = [ap, b,] = 0.

Hence,
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(10.18)

(10.19)

(10.20)

(10.21)

(10.22)

(10.23)

(10.24)

(10.25)



e incoming e~ is ¢* insertion @ ----p----- .
e incoming et is ¢ insertion @ - - - -«------ .
e outgoing e~ is ¢ insertion & ----p----- .
o outgoing e™ is ¢* insertion e - - - —«------ )

Remark 10.2. Diagrams come with particle or charge flow arrow.

10.4.3 Vertices

Expand out covariant derivative, D, = 0, + ieA,, the Lagrangian is

2 —iFWF‘“’ + Dd(D )" — mee*

10.26)
1 ‘ (
= = FwF" —¢" (0 + m?)p —ieA, (¢* 0" ¢ — (09" )¢) + €2 A AFpo™ .
Comes from the Lagrangian, the vertex should have the value,
\\\ p
4
.
/g
where the last i comes from the expansion of '/ “ntd and we will determine the signs later
Remark 10.3. The physical quantity is |.#|?, so what does matter is the relative signs.
. Because A, A" = g, A" AV, we have
\\\ 2
q/v ) = €%i2gu , (10.28)
<

zntd4x

where the 7 comes from the expansion of the etf again.

Remark 10.4. We cannot normalize with a factor of 1/2, because we cannot change the term (we have

gauge invariance requirement).

Now we need to derive the signs. Such a vertex term comes from the term A, (¢*0"¢ — ¢p0*¢*). Recall

that for incoming particle carrying a momentum k, the Feynman diagram is

(10.29)
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for the outgoing particle carrying a momentum k,

k
<
(10.30)
So for the term ¢*0" ¢, there are two possible diagram
5/ | // |
cnd ¥k MR = gtk ~ Ot = gk (10.31)
| |
For the term —@o*¢*, also two possible diagram,
A , ol .
'\/vvvvx/\/ ~ _8H6_Zk‘r = 1]{“7 ’\/VVV\/\/\/ ~ _a#eka = _Zku : (1032)

\ \
\ \

We conclude that the sign will be —¢k#* if momentum and particle flow arrow are aligned, +ik* if they are

anti-aligned.

Example 10.1.

s = (=P = ") o = de(—pf + ). (10.33)

10.5 Mgller scattering

The Mgller scattering process is

e e —ee . (10.34)
The tree-level Feynman diagram is
e~ e~
A " 1/ e e
pl\\\ 4 /pg \\t\\ pl/' //, <
p1 A . .
+ St \f4 =M + 1My, (10.35)
» P2 SN
2 P4 7 s
AN 24 N
/,; aQ .7 N
- N e e
e e
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. . Ypv — 1 _6 Fuly . v
iMe = ie(—p1 — p3)" (‘Zgu (k2 : = ) ie(—p2 — p4)

(10.36)
_ 5.2 “w
=’ (p1 +p3)" (P2 +Pa)p7———3
( ) ( )H <p3 o p1)2
because (p1 + p3) -k = (p1 + p3) - (p3 — p1) = p3 — p3 = 0, the result is indeed ¢-independent.
o
ity — ic2PL Y P (P2 jm)“ (10.37)
(Pa — p1)
the cross section is
<dg> _ 1 ) = c! [(m + p3)(p2 + pa) N (p1+ pa)(p2 +3)]
dQ) oy 642 ERy, 6472 E2,), (p3 — p1)? (ps — p1) (10.38)
_a2 s—u s—t]? _62 1
Cds |t u ’ S 4m 1377

where the subscript CM means the center of mass frame.
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Chapter 11

Finite dimensional representation of the

Lorentz group

11.1 Lie group and Lie algebras

Lie groups are differentiable manifold that carries a group structure. Much of the structure is reviewed by
studying them independently in a neighbourhood of the identity, which is called the Lie algebra, a vector

space with multiplication.

Example 11.1. For matriz groups, containing matrices of some dimension, no longer necessary invertible.

There exists a map:

exp:¥9 — G
. (11.1)
A e,
The group multiplication is encoded in commutator of Lie algebra,
[,]:9x9 9. (11.2)
For matrix group, it is natural to have [A, B] = AB — BA. Finite dimensional Lie group have finite
dimensional Lie algebra.
11.2 Representations of Lie group and Lie algebra
Definition 11.1. The representation of Lie group on vector space of dimension n is a map:
pc: G — Aut(V) = GL(n), (11.3)
where GL(n) requires choices of the basis of V.
Definition 11.2. Representation of Lie algebra on same V,
pg;9 — End(V) = M(n), (11.4)

where M (n) is the matriz collection and it doesn’t require the matriz is invertible.
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PG, pg both respect the group/algebra structure,

pc(9192) = pa(gr) o plg2), for Vgi,92 € G,
py(aA+ BB) = apy(A) + Bpgy(B), Vo, €R/C,A,Be¥, (11.5)
pz|A, B] = [py(A), p#(B)] .
Theorem 11.1. Finite dimensional representations of connected and simply connected Lie group are in

one by one relation to finite dimensional representations of their Lie algebras.

Definition 11.3. Connectness: A topological space is connected if it cannot be written as the adjoint union

of two non-empty open sets.
Lemma 11.1. The continuous image of a connected space is connected.

In fact, equivalent definition of connectness is: X is connected if all continuous functions from X to

the space {1, —1} with the discrete topology are constant.

Definition 11.4. Simple-connectness: X is simply connected if all continuous maps S' — X can be
continuously contracted to a point.

11.3 Connected components of the Lorentz group O(1,3)

There exists two group homomorphism ¢; : O(1,3) — {+1} i=1,2.

$1 = Paer = A det(A)

11.6
$2 = Psgn: A Sgn(AOO) ) ( )

component | in Pger | in Pggn
SO™(1,3) 1 1
PSOT™(1,3) -1 1
TSO™(1,3) -1 -1
TPSO™(1,3) 1 -1

SO'(1,3) is connected (in fact, it is path connected). O(1,3) has 4 connected component.

11.4 The simply connected cover SL(2,C) of SOT'(1,3)

SOT™(1,3) is not simply connected. since the subgroup SO(3) is not simply connected. Its double cover
SL(2,C) (2 x 2 matrices with unit determinant) is simply connected. We construct the group homomor-
phism: K : SL(2,C) 2} SO'(1,3). Let H = {4 € M(2,C)|A! = A} = (09, 7). Consider

¢:R*> H
(11.7)
x = ato,
where the determinant
det(a"c,,) ¥+ 23 2l —ia? u (118)
et(zto,) = =atx, . .
H at +ia? 2V — 23 .
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Let SL(2,C) act on H by conjugation,

GeSL(2,C):H—H

A GAGH, (1L9)

Definition 11.5. We could then define the group homomorphism K : SL(2,C) — SO'(1,3), K(G) : R* —
R? such that
Go(2)GT = (K (Q)x)'a, . (11.10)

We claim that K(G) € O'(1,3), K(G) is linear follows from the linearity of ¢. K(G) preserves

Minkowski norm, since

K (G)z] [K(G)a]* = det ([K (G)]"c,) = det (G¢GT) = det(G) det () det (GT) = det ¢ = z,2" .
(11.11)
As continuous image of connected space is connected, we conclude that K(G) € SO'(1,3). We indeed

construct a group homomorphism from SL(2,C) to SO'(1, 3).

Remark 11.1. The kernel of the map K is

KerK:{(l O>,<_1 O)}, (11.12)
0 1 0 -1

thus the map K is two to one.

11.5 The Lie algebra SO(1,3)

Example 11.2. The transformation of SO(1,3) takes the following form, for example, the rotation around

x-azis and the boost along the x axis is

1 1
1 infinitesimal 1
H
cosb, sinf, 1 6,
—sinf, cosf, -0, 1
(11.13)
cosh 8, sinh 3, 1 B
sinf8; cosh 3, in finitesimal Bz 1
1 1
1 1
All matrices on the right have the form
1+1460;J;, 1+i6;K;. (11.14)
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The SO(1,3) is generated by {Ji, Ja, J3.K1, K9, K3} with the following commutation relation

(i, Jj] = ieiji i s

[Ji, K] = igiju K

[Ki,Kj] = _isiijk: .
Or more compactly, define

0 K1 KQ K3

—Kl 0 J3 —J2
-Ky, —J3 0 J1
-Ks J, —=J; 0

with the commutator
[V,u,l/’ Vpo'] — (ngVMU _I_gquVp _ gupvl/O' _ gljavup) E

We introduce the generator ) )
Jt = §(Ji +iKy), J7 = §(J¢ —iK;),
with the commutator
[J+ J+] = iEiij+ s

)
[Jz'_“]j_] :iEiijk_,
+ 71
[‘]i ’Jj ] - 07

(11.15)

(11.16)

(11.17)

(11.18)

(11.19)

based on these generators, we conclude that SO(1,3) = SU(2) @ SU(2). The irreps of SO(1,3) (and thus
SL(2,C)) are labelled via the tensor product of two irreps of SU(2), which means that they are labelled
by two positive half-integers (A, B), while the irreps have dimension (24 +1)(2B + 1). The representation
(A, B) of SU(2) ® SU(2) (or of SL(2,C)) acts on the tensor product of the SU(2) representation spaces

Va,Vp as
(A B) (@ +a )V e W) = (p PtV oW + Ve @ a)w)

YWeoWeVieVp.

To help identify (A, B) with irreps are already known, it helps to strict to rotations. Since

s0(3) = su(2) < su(2) ® su(2)
HiJZ' — 91(J1+ + J;) s

p(a,B) Testricts to the tensor product representation pa ® pp of SU(2).

irreps of so(1,3) (0,0) (3,0) (0,3) X))
irreps of su(2) | 0®0=0|3® :% 0®%:% lgl=001
irreps of so(1, 3) (1,0) (0,1) (1,1)

irreps of su(2) | 1®0=1|0®1=1|1®1=06162

e 0®0 =0 is the trivial representation (scalar).
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% ®0and 0 ® % are two spinors reps.
(3 ® 3) are 4-vector reps.

1® 0 and 0 x 1 are self dual reps.

1 ® 1 is traceless symmetric reps.
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Chapter 12

Spinors

12.1 Spinor representations (3,0) and (0, 3)

Recall the two dimension spin 3 irreps of SU(2). We can choose Pauli matrices as generators of SU(2),
with commutator and anti-commutator
[Oi, Uj] = QiEiijk s {O’i, Jj} = 25@' . (12.1)

The 2 dimensional (0, 3) and (1,0) irreps of so(1,3) are spanned by

1 3 o;
G0 Ppoli) =5 raolin =0
1 o (12.2)
-\ O
0, 5) p(O,%)(‘]i )=0 P(07%)(Ji ) = 5
The generators of rotation and boosts can be represented as
.0 Ji) = Tt ay =2
G0 Puo) =peoli +7) =3
) = o o) (T = T7)) = Lo
p0)(Fi) = P (017 = 7)) = o .
1 o; (12.3)

(0, 5) P(o,%)(ejz') Y

i
Plo.) i) = =501
Remark 12.1. Such a representation is not a unitary representation since it is finite dimensional. There
two representations are related by conjugation. We call these two are conjugated representation with respect

to the other one.

Theorem 12.1. Let G and H be topological groups, and assume that G is simply connected. Let U be a
neighbourhood of the identity of G. Then for any local homomorphism U — H, it can be extended to a
homomorphism G — H. For us, H = Aut(V), exp |, : u — U.

Definition 12.1. A spinor is an element of the (%,0) or (0, %) representation space Vi1 ) or Vg 1y, we
27 72

define

e YR € V(O,%) is the right-handed Weyl spinor.
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e Y € V(; 0) is the left-handed Weyl spinor.
27
Our convention (A, B) corresponds to the generator J; and JZ-+ separately.

Under a Lorentz transformation, writing JF = pr(J;) and K = pr(K;),

1 1 )
QpR — exp (7107“]74(0,2) + ZBZK50,2)> wR — eé(leiai—kﬁigi)wR
1 (12.4)
Yr — exp 5(@91- — Bi)oi | L.

12.2 Lorentz invariance and spinors

To construct Lorentz invariant Lagrangian out of spinor fields, we need to combine spinors to obtain scalars.

12.2.1 ¢ vs. of

Spinors are complex, we need both ¥, ¥ r and 1/12, QZJE to construct Hermitian Lagrangian. Notice that
_13i0:78:)0
Why = Ve 20T o gl €V r) vr vl e Vi) (12.5)

The overall sign has mathematical explanation. We have defined representation via a left group action
GxV — V with h-(g-v) = (h-g)-v. We can also use the right group action, which is equivalent:
VxG—=V,(v-g)-h=wv-(g-h). They are one to one correspondent. The left group action representation
p satisfies p(h)op(g) = p(hog), while the right group action presentation j defined by p := p(-~1) satisfying
op(g) = p(hg), i.e. wz, 1/}}; transform in the (0, %), (%, 0) irrep, implemented as a right action.

12.2.2 Tensor product representation

Products of spinors transform in tensor product representations

(3,0) X (%,0) - (% ® %,0 % 0) = (0@ 1,0) = (0,0) & (1,0), (12.6)

we can project (wz,wR), (w;, 1) onto trivial representation. If choose two different handed spinor, for

example,
toeod=teoos
27 72 - 2 )

1 11

5) = (§, 5), (12.7)

this tell us that we can construct trivial representation by contracting with a four-vector from (TZJL, VR),

!, vr).

12.2.3 The scalar representation from spinors

We consider transformation of wsz = Z?:l(¢£)i(wR)i where

W=Gﬁbzwm%1mﬂmm. (12.8)
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Remark 12.2. {e; ® e;} is a basis of Vio,1y ® V(o,%): and the coefficient is related to 1#21/}3.

1
2

The Lorentz transformation (in the variation form) is

S(iR) = d(W1 )R + 1l 8(vR)

1, t i1 (12.9)
= —5(191' + Bi)YoivR + ¢L5(29¢ + Bi)oir =0,

which proves that 1/121/13 + ¢E¢L is both Lorentz invariant and Hermitian,
12.2.4 The vector reps. from spinors
The four vectors of Lie algebra transforms as

5(Uo,vi) = (ﬁivi, BZ'UO — z—:ijkﬁjvk) . (12.10)
We want to construct the corresponding basis of V( 10) ® V(o, 1. Consider w}%w R

6 (Vhir) = S(wh)vn + ko
1,. 1.
= —5 (10 — Biyhowr + 5 (10 + Biyyhoibr (12.11)

= B hoivr .

w}%wR transform as the time component of a four vector. If we identify 1/%011? r with the spatial component,

5(1/1}501'1#1%) = _%(iej - Bj)ﬂ%aja“/;R + %(wj + 5;‘)1/1201'03'1/)3
B %ij}%[% oilYr + %/Bﬂ/’k{% i }Ur (12.12)

= —einbj 0 hordr + Bivhg

which transforms as we expected. So (w}}wR, ¢};a¢w3) transforms as a four vector. If we introduce o* =
(1,0;), the four vector can be written as Y rotpr. Likewise (@ﬁz?ﬁL, —@ZJEUﬂbL) transform as (v°,v%), by
introducing o = (1, —0;), the four vector is %025“1%-

12.3 Lorentz invariant Lagrangian involving spinors

12.3.1 The Dirac Lagrangian

We have the following proposals

e Jy 28”1/1 R+(’“)Mw%8”z/1 1, which is Lorentz invariant and Hermitian. Such a Lagrangian can be mapped

to Lagrangian of multiple coupled scalar fields.

. iwga“f)uwpg, izﬁ}&”@uwb which is Lorentz invariant. And

(iphotd,0r) T = —id, 05" R = —id kot yr = =i, (WhotvR) + ipho"dr,  (12.13)
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up to a total derivative it is also Hermitian. The mass term should be proportional to wEwR#—w;{wL.
By dimension analysis, the action should be dimensionless [S] = m®. By [d*z.%, [£] = m*. From
kinetic term we know [1)] = m®/2, so [wTLw R+ Qﬁ;[%wL] = m?3, the term should be

m (hon +vfu) . (12.14)

Remark 12.3. The mass term couples to ¥y, and yg.

For the theory with massive spinors, it is convenient to work with reducible Dirac representation, the Dirac

spinor 1 defined as

YR

where the v is called the Dirac conjugate. And we define the 4 x 4matrices

0 ot
- : 12.16
g (a“ 0 ) (12.16)

using these notations, the Lagrangian can be written as a compact form,

b= <“> 0= (hvh), (12.15)

&L =(iy" 0, —m)ip. (12.17)

Before we study the quantum theory, we first quickly learn the Clifford algebra for preparations.

12.3.2 The Clifford algebra

The 4* introduced above satisfy {y*,~v#} = 2¢"”1. Any realization of this algebra in therms of 4 x 4
matrices can be used to construct the Dirac representation. Define S* = %[7“, ~¥]. Purely involving the

anticommutator, we can verify that
[S,ul/’ Spa] — .(gypSyo + g,uchz/p _ gucrs,up _ g,u,pslxo) , (1218)

which is the exactly the commutation relation between the generators of so(1,3). S*¥ furnishes a repre-

sentation of so(1,3). If we choose

0 ot
- , 12.19
gl [C_w 0 ] (12.19)

which is called the Weyl representation. The S# can be written explicitly as

.. 1 Ok 0 . v [0y 0
S = g, , SVi—__ . 12.20

Compare to

2 (12.21)



This reps decompose into V(o 1@ V(; 0 (S’”’)T to obtain V(; 0) @ V(o 1y. A second realization of the
) 2’ 27 2
Clifford algebra,

0 o9 103 0 0 —o9 —t01 0
70 = , = S = , P= R (12.22)
o2 0 0 o3 oy 0 0 —ioq

which is called the Majorana representation.

Remark 12.4. At the level of representations, the Weyl and Majorana representation are equivalent.

12.3.3 Lorentz transformation properties of spinor bilinearities revisited
We have Ag = 5" which is the reducible (0, %) ® (%,O) representation. In another side, we have
A, = €PwV" the irreducible 4-vector representation. How to construct Lorentz scalar from product of

Dirac spinors? First, we claim that (y°Agy°)t = Agl and (y9)% = 1. Give the claim, for a Dirac spinor v,
t N
Y10 = (As9)T70 = 172 A0 = 9ia® (10457°) " = 9T70A!, (12.23)

where we use (fyo)T =9 s0 1% transform as a scalar.

Lemma 12.1.
(7T ="949°. (12.24)

Proof: From the anticommutator {v#,7"} = 2¢"”1, we know that
(V) =1, (v)'=-1, (12.25)

which means that the eigenvalue of 4Y is 1 and the eigenvalue of 4% is &4. If the Clifford algebra is realized

in terms of normal and unitary diagonalizable matrices, hence

() =+, ("' =—, (12.26)
ie.
(V)" =1%"°,
(V) =%, (1220
Lemma 12.2.
(SM)F =081, (12.28)
Proof:
poyT iuuT iOVOO/LO iOZ/Z/O 0quv.0
() =1{ 70"") = =70 T = = A =408 (12.29)
We then prove the claim (y°Ag7°)t = Agl now,
Proof:
(F)/OAS’YO)T = (f‘yoeieuusuy,y())‘r —_ ,_Yoe—ie,uv(s‘uu).r,yo — e—ilguyS'“” — Agl ) (1230)

The next question is how to construct Lorentz 4-vectors from Dirac spinor bilinears. Using the property
Ag'y"As = (Av)", 2", (12.31)
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It is easy to guess ¥Ty0y#1) transforms as
Iy — TOAG Y Agtp = (Av)H, 1Ty 4, (12.32)
which is indeed a Lorentz 4-vector.

Remark 12.5. with ) = (¢r, Yr)T this reproduces the results obtained above via the Weyl representation.

12.4 The Dirac equation

12.4.1 The free equation
The Lagrangian is

L = 10" 0, — m)y = (i —m)y, (12.33)
where A :=~"A,. The EoM (¢ and YT are independent)

0% 0% - _
= 22— A =0
Y OV = 0wt me =0, (12.34)

& 10, +myTP =0 e (—igy +mp)l =0.

for 4 :0,

For ', we rewrite the Lagrangian as .Z = —i@M@Z_W%b +1i0, (@Z'y“@b) — maptp, then

0 0%

“W_(?TN:O & —idp+myp=0. (12.35)

We then get the Dirac equation
(i —m)p = 0. (12.36)

Remark 12.6. Each component of 1 satisfies ordinary Klein-Gordan equation, to see that, acting (id) +m)

on both sides of the Dirac equation,

(@ +m)id —m)p =0 & (=907 —m*)p =0

(12.37)
s (@+mHy =0,
which is the dispersion relation p> = m? upon Fourier transformation.
12.4.2 Coupling Dirac spinors to the photon: the QED Lagrangian
We have ¢ transform in representation (parameterized by Z) of U(1) (gauge) group,
e W (12.38)
which is a global symmetry of free Dirac Lagrangian. Evaluate to a local symmetry,
8y — Dy =8, +ieA,, (12.39)
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such that

Dy =e Dy (12.40)
We then have QED Lagrangian,
1 . _
L = _iFMVF;W + Z¢¢¢ - mWP . (1241)
The Equation of motion is, for v,
(iD—-m)p=0 & (i—ed—m)p=0, (12.42)

which is the Dirac equation of spinor minimally coupled to a photon. EoM for A*,
0, FM = ely"1p, (12.43)

which is the Maxwell equation with source J* = etpyHa).

12.5 Quantum Dirac spinor fields

12.5.1 Review of setup

¥(x) is a quantum Dirac spinor field, which transforms under the Lorentz transformation as

U(A)y(2)U " (A) = Dpirac(A™ ¥ (Az) = Ag'y(Ax), (12.44)
where 3 ,
)(x) = / (2:;3@ > (ua(p)aa(p)ef"m + va(p)bieip”“’) : (12.45)

where uq(p), vy (p) are polarization tensor, a, is the annihilation operator for particle and b}; is the creation

operator for anti-particle. In order to make it well defined, we need to clarify two things
o identify infinite dimension unitary representation of Lorentz group.

e find the ug(p), Ua(p)‘

12.5.2 What type of particles can Dirac field package

Recall that the little group for massive particle is SO(3), which is the subgroup of SO'(1,3), where we
keep the fiducial momentum &k = (m,0,0,0) fixed. Now

SL(2,C) -5 S0™(1, 3)
al lg , (12.46)
SU(©2) —2L— S0(3)
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and kyo' = mo® is fixed. Decompose (3,0) @ (0, 3)|sy(2) (irreps of SU(2)) and recall that SU(2) (of
rotations) can embedded diagonally into SU(2) & SU(2),

1 1 1 1 1 1
il i —— ==, 12.47
(2’0)@(072)|SU(2) 2®0@0®2 2@2 ( )
The only possible choice of irreps for the little group is the spin % irrep.
12.5.3 The intertwiner solve the Dirac equation
Based on the discussion above, u(p) (v(p)) takes the following form
“%/2 “1—1/2
uiy Ul
u(p) = | "2 vz | (12.48)

3

Uy U_q/9
4 4

Uy Uy

where the row index is the spin index and the column index is the Dirac index of (3,0) & (0, 3) reps of
SL(2,C). Likewise, v(p) has the similar form. u and v must satisfy (recall the equation (8.32]) )

2(AM)u(p) = Asu(p) = u(Ap)D

: (12.49)
Z(M)v(p) = Asv(p) = v(Ap) D1 (W(A, p))

Proof: These two equations need some more details. The initial equation for polarization tensor is
> D5, (W(A, p))et, ( Z PN e o (Ap) . (12.50)
By definition of Hermitian conjugation, we have
S DL (W (AP (p) = 3 2(AT e (Ap) (12.51)
Changing A — A=, p — Ap, we have
> DL (W (AT, Ap))ets( Z 7(A (12.52)
Taking the advantage of the unitarity of D, and write the equation in matrix form, we have
7(Me(p) = e(Ap) Dy(W(A™H, Ap) ™), (12.53)
where J denotes the spin-J representation. Based on the definition of the operator W,
WA Ap) ™ = U(L™ (p) A" L(Ap)) ™ = U(L™H(Ap)AL(p)) = W(A,p), (12.54)
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substitute back to the matrix equation, we have
P (MNe(p) = e(Ap) Dy (W (A, p)), (12.55)

back to our discussion, we have

Asulp) = u(Ap) Dy (W(A,p)),  Asv(p) = v(Ap) DI (W(A,p)). (12.56)
It is convenient to denote
ut vT
u=| |, v=| _ |, (12.57)
u v
where u®,v* are all 2 x 2 matrices. Consider first p = k, then A is a spatial rotation p, such that
W (p, k) = p. Recall that with
0 0. —0, _
wi= |6 0 8 |, Dylp) = etk = ittty (12.58)
0, -0, 0
i g T 1 or O
— zwijSJ 7‘3:1 1 J] — Z o~ k 12
ps =e , §9=10"7] 25wk<0 Uk) , (12.59)
the equation reduces to
oput (k) = uF(k)oy, (12.60)

which means that u* (k) commutes with all the generator of SU(2). By Schur’s lemma,

1 0
+ +
u(k)=c . 12.61
) (0 1) (1261)
For v(o), the equation is
ot (k) = —vi (K)ol o  owt(k)oy = vE(k)owo;, (12.62)
where we use 0} = —090;02 and 05 = 1. Then [vE(k)og, 03] = 0, by Schur’s lemma,
1 0 0 —
vE(k)oy = d* = otk =dt | ). (12.63)
0 1 t 0
u® (k) and v* (k) solve intertwines equation for any choice of ¢*,d*. Parity and locality (as we will see)
impose ¢t = ¢~, d¥ = —d~. A choice of normalization is ¢* = \/m, d* = Fi\/m,
1 0 0 -1
0 1 1 0
u(k) = vm , v(k) =+vm : (12.64)
10 0 1
0 1 -1 0
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For arbitrary momentum p, we know that

u(p) = L(p)su(k), wv(p) = L(p)sv(k), (12.65)

where L(p) is the fiducial Lorentz transformation L(p)k = p. With

m\~ (*\" monon o
0 pl %
L(p)ﬂu 0 = p2 ) L(p) = I:nj (1266)
0 P %
Recall that Aglfy“AS =AY, Aglfyo = AOV*y“AEl. In Weyl realization of v matrices
0 01 0 0
=1 o) T k) =uk),yuk) = —u(k), (12.67)
= u(p) = L(p)su(k) = L(p)s7 ulk) = (L(p)~1)°,7" L(p)su(k) (12.68)
_ - _ - p’ Dy
AT, = M0gpg™ = (L))" = (L) 6™ = (L(D)) Gpy = —Gpw ="~ (12.69)
This gives y
0) =" ulp) > (p=m)u(p) = 0. (1270)
Likewise
v(p) = —%v(p) = (p+m)u(p) =0. (12.71)

In this case, the quantum Dirac spinor field satisfies (i@ — m)y(x) = 0.

Remark 12.7. Pay attention the difference between the previous discussion. In the former section we
derive the EoM for v(x), which is the same. However, it is from Lagrangian and isn’t quantized. Now the

quantized field still satisfies the EoM of the same form, but have different meaning.

12.6 Chirality and the ~° matrix

Chirality distinguishes between two Weyl irreps, (1,0) left-handed and (0, ) right-handed. Recall that a

Dirac spinor has no fixed chirality, we can project it onto the chiral subspace via +° matrix.

Definition 12.2.
7° =iy (12.72)

Theorem 12.2. {#} is a complete set of projection operator.

Proof: The proof separates into two steps. First, we prove that 1i275 is a projector, since
2
1£4° _ 1+ 295 + (75)? 1 + 45 (12.73)
2 4 2
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where we used (7°)? = 1. And

1+9°1F+° 1
2 2 4

(14+4° =" = (v")?) =0. (12.74)

These projector will project the states onto 7> eigenspace to eigenvalue 1. Because Tr~° = i Tr (7071727 ) =

0, the number of the two eigenvalue +1 must be the same. So the dimension of each eigenspace is 2.
Theorem 12.3. Eigenspace of 7° is invariant under SL(2,C) transformation.

Proof: Consider the generator of SL(2,C) transformation S and

g1 £7° _ E[V“ vy]liv‘r’ (oar=0y 1£9° 0
’ 2 2 4

1+£4°
SR [, 7") = =8 (12.75)

2

We conclude that the eigenspaces are irreducible (1,0) and (0, 1) subspaces of the rep. (3,0) & (0, 3).
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Chapter 13

Discrete symmetries and CPT theorem

13.1 Beyond SOT(1,3)

Recall that SOT(1,3) is the connected component of O(1, 3), which contains the identity,
SOT(l, 3) = Ker pqer N Ker @ggr, - (13.1)
What about the other 3 components, obtained by adjoining
1 -1
space inversion P = , time reversal T = , (13.2)
-1 1

and PT to SOT(1,3). These may or may not be symmetries of fundamental interactions. If they are, those
should exist operation P = U(P) and T' = U(T) acting on the Hilbert space which acts as

PU(a,A\)P~' = U(Pa,PAP 1),

13.3
TU(a, \)T™' = U(Ta, TAT™1). (133)

13.2 Action of P,T on Poincaré generator

13.2.1 Parity

Recall U(a, 1) = eianl"  where PH = (H, P") (we add the hat to distinguish with the representation of the

space inversion P.).

PU(a,1)P™ = P (1+ia,P* +...) P =14 ia,PP'P~" 4 ..
| ) (13.4)
=UP,1)=1+i(Pa)- P+ ...,

which gives
PiPP~! = iPP. (13.5)
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If P is linear, unitary (Wigner’s theorem), we have

N . PHP'=H
PPP'=P.P & N . (13.6)
PpPp~t=—p

To study the action on Lorentz generator, note that for VA € SO(1,3),

PAP~! € SO'(1,3),

(13.7)
TAT 1 € 50'(1,3).
P and T act via conjugation on Lie algebra so(1,3). For U(a,A) = exp (%wm,j‘“’) = U(A), where
AP =80+wl, +..., (13.8)
and
0 Ky Ky K3
-K; 0 J3 —J
vy 1 3 2| (13.9)
—Ky —J3 0 J1
-Ks Jy —-J1 0
we have .
PUANP =P <1 + %WWJW +.. ) p1
L -1y _ ; -1y  juv
N A PKiP~l = —K!
= PJWPT =JJP)" & N N ,
PJiPt=J
fori=1,2,3.
13.3 Time reversal
Similar to the parity operator, denoting 7' = U(T), we should get
TU(a, )Tt =U(Ta,1) = TiPT'=iT -P. (13.11)

Assume T is linear, TPT 1 =T-P = THT ' = —H. If T is a symmetry, for any state |1) of energy E,
J|¢) = T |¢) such that H|¢) = HT |¢p) = —TH |¢p) = —E|¢$), leading to the negative energy solution. So

the only possible choice is that T is anti-linear. Assume that 7T is anti-linear

TOT'=H
—1 . ~ T . S TPT! =P
TiPT " =iT-P = —iTPT " =iT-P = ) . . (13.12)
TK'T™! =K'
(TS =T
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13.4 Action of P,T on Hilbert space

Exemplified: on parity and massive representation of SO'(1,3) or SL(2,C). Consider | ), where k =
(m,0,0,0) in a given irrep of SO(3) or SU(2),

PM |wk,a> =kt |77Z}k,0> 5

A (13.13)
I3 |[Vro) = 0 [Vro) -
Then
PP |¢p0) = P(P - P)* [o) = P(P - k) [ke) "= KMP [iio) (13.14)
which gives the same momentum.
J3P ko) = PJs|¥ko) = 0P |Yr,) - (13.15)

If we assume that the joint eigenspaces are non-degenerate, P |y, ») = 1 [¢k o) With |n] =1 (up to a phase).
Is there any o-dependence in 1?7 Notice that the raising and lowering operator Jy +iJ; of ¢ commute with

P, n is o independent. Is there any momentum dependence of n? Consider

Ypa) = U(LD)) Wro) = Plpe) = PUL®P) P Plrg) = U (PLP)P™Y) my [ng) . (13.16)

Lemma 13.1.
PL(p)P~! = L(Pp). (13.17)

Proof: The L(p) can be decomposed into the boost along the z-axis and the rotation that rotates z-axis
to the direction of arbitrary spatial momentum p),

L(p) = R(e, — p) o B(0 — |ple.), (13.18)

then
PL(p)P~' = PR(e, — p)PP IB(0 — |ple.)P~! = R(e. — p)B(0 — —|ple.)
= R(ez — _ﬁ)B(ﬁ_ |m62) = L(Pp) )

where we have already used the result that the parity operator commutes with the generators of rotations

(13.19)

and anti-commutes with the generators of boosts.
Then the equation (13.16)) becomes

Plipe) =U (PL(P)P) i [¥or,0) = U(LPP))k [Vk,0) = i [oPpa) (13.20)

which means that 7 is momentum independent. 7 is called the intertwine parity of the particle |1y, »). Note
that P? |1, ) = Pg [¥ppo) = 02 [thp.o), P? is called the internal symmetry (not related to the spacetime),

which commutes with all Poincaré generators.

Example 13.1. The standard model has the conserved charges baryon number Qp(Q1), lepton number
Qr(Q2) and electromagnetic charge Qem(Q3), € 2% for a; € [0,2m) is an internal symmetry. P is not
uniquely defined as we see in the example. For given P, we can define P' = Pe'2-%%i sqtisfies the same

relation of parity, but yield different numerical value for the intrinsic parity of particles. The intrinsic
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parity of 3 independent particles can be fized by choosing oy appropriately.

The time reversal T is similar, except the occurring phase can be absorbed in the definition of the state
(due to the anti-linear of T').

13.5 Transformation of quantum fields under the discrete symmetries
P and T

We exemplified on P and massive irreps.

13.5.1 Transformation of creation and annihilation operator

The creation operator
1

o) =
Ay 10) ml%,d : (13.21)
which gives
1 1 _
———=P o) = —==n|Upps) = nab,, 0) = Paf ,P~1P|0) (13.22)

2wp \/ 2wp

if we assume the vacuum is parity invariant, P |0) = |0), we conclude that

Pal P71 = naT
e Pp.o (13.23)
= Pap,C,P_1 =n"appo -

13.5.2 Complex scalar field

The parity transformation acting on the field,

3
Po(z)P~! _P/ (;lﬂl)’g L

a e—ipac +bTeipx:| P—l
2wp { b P

ﬁ

(13.24)

/N

n*appe—ip:c + ncb]l;peipm> 7

_ d3p 1
-/ @n? 2oy

where 7€ is the intrinsic parity of anti-particle. By imposing ¢ = n* to protect the theory, we have

d3 1 . .
n / 3 (ape_l(Pp)aj + b;r)ez(Pp)x) =n"¢(Px), (13.25)

(2m)3 /2w,

where we use the invariant measure property, w, = wpp,, P~! = P and change the integration variable.

Remark 13.1. In a theory conserving parity, bound state of a scalar particle and its antiparticle mush
have parity nm© = nn* = 1.
13.5.3 Dirac spinor field

Using the same relation ((13.23)), we have

dp 1

Po@p = [k NeTS

[ us (PP)as (D)™ + 1u, (Pp)b ()™ | (13.26)
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By 105070 — _§0i ~0giin0 _ gij
= @Dirac(PAP_l) = 709Dirac(A)’YO ) (1327)
= Us(Pp) = Ppirac (L(Pp)) us (k) = gDiraC(PL(p)P_l)ua(k’)

= Dpirac(PL(D)P™ )t (k) = 7° Dpirac(L(p))7 uo (k) ,

where used the lemma ([13.1). Notice that 7%uy(k) = u,(k), the equation reduces to y’uy(p). Likewise
vy (Pp) = =%, (k), where the minus sign comes from 7v, (k) = —v,(k). We conclude that

(13.28)

Py(x)P~" = 0"y (Pa) (13.29)

where we impose ¢ = —n*. In a theory conserving parity, the intrinsic parity of one survive bound state

of a Dirac spinor and antiparticle is 77¢ = —|n|?> = —1. Recall that

ct 0 0 —df
0 ¢~ dt 0
k) = , k) =1 . 13.30
ay= | 1w =i | (13.30)
0 ¢ d 0
We need yu(k) = au(k),
c 0
Yu(k) = 0« = act=c ,ac” =c"
ct 0 ’ (13.31)
0 c*
& a2:1,a:j:1,c+:j:c*
Likewise 7°v(k) = Bu(k),
0 —d-
d- 0
0 + - g +
you(k) = = d"=pd",d =pd",
0 —df (13.32)
dt 0

= f[71,8=41,d" =+d .

13.6 Charge conjugation

Processes which are not invariant under P, T transformation, are invariant under PT if we also exchange

particle and anti particles. We introduce the operator C’, such that

(13.33)



where £ is the intrinsic phase. Similar analysis as above yields,

Co(z)C™ = € ¢*(z), (13.34)

Cop(x)C! = =i’ ().
13.7 CPT invariance

All Lorentz invariant interactions that we can construct from quantum fields lead to CPT invariant actions.
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Chapter 14

Spin statistics

14.1 What types of statistic are possible?

Before we start the discussion, we need to clarify what is statistic.

Definition 14.1. Statistics is identical particle behaviour of a product state under exchange of identical

particles.

Why the name partition function in statistical physics depends on statistics of particles? Recall that
a particle is specified by (geometrically) irreducible representation of the Poincaré group and a full set of
quantum numbers (for example, the electric charge) excluding the Poincaré quantum numbers. |p,s,n),
where p’is the momentum, s is the spin/helicity index, n is the special label. The state describing two
identical free particles of species will reside in the Hilbert space 4" ® ", where n is the special label

and subscript 1 means the one particle Hilbert space.
H" @ " = (|p1, s1;1) @ |Pa, s2;1) 4 |Di,y sism) € ST (14.1)

As first and second particle does not have an invariant meaning, we introduce subspace such that |pi, s1,n, pa2, s2, n)

and |pa, s2,n, P1, s1,n) are physically equivalent, which means that

- — ! — —
‘p1781>nap2732an> :a|p27$27n>p1781>n> (142)

with a phase. There comes to the next question: what « depends on?

14.1.1 Spin/helicity dependence of «

The subspace we introduce must carry a representation of the Poincaré group. First, consider two particles

of fiducial momentum k, the Hilbert space
VieVi=MWMeW)s®(VieW), (14.3)
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where V) = (|k,s,n)) and the subscript s means the symmetrized operation while ¢ means the anti-

symmetrized operation,

1

V2

then a = £1 because of the irreduciblity (can only lives in one subspace), so it is independent of spin/he-

(‘/i®‘/i)s,a: < (‘k7517n>®|k7527n>i’k7527n>®‘k7317n>)> ) (144)

licity.

14.1.2 Momentum dependence of «

If o depends on momentum, it must depend on p1, p2. By Lorentz invariance, it should
D1, 51,75 P2, s2,n) = apy - p2)(pa - p1) [P1, s1,m3 2, s2,m) = oP(p1-pa) =1, alpy-p2) = +1.
(14.5)

If we impose continuous dependence on momentum, the only possible situation is that it is momentum

independent.

Definition 14.2. If a(n) =1, n is a boson. a(n) = —1, n is a fermion.

14.1.3 Anyons

In two dimensional case, there exists much more particle types (o can take arbitrary U(1) value), which is

called the anyon.

14.2 The spin-statistic theorem
Bosons transform in integer spin representaion of Lorentz group (i.e. irreps of little group SU(2), labelled
by Z). Fermions transform in half-integer spin representations. We will check this argument via the Lorentz

invariance of time-ordering. For time-ordering to be a Lorentz invariant concept, the ordering of space-like

separated fields should not matter.
Remark 14.1. When |z — y|?> <0, sgb(z® — y°) is Lorentz frame dependent.

Following this spirit, we study the (anti) commutation relations of space-like separated fields.

14.2.1 Real scalar field

For real scalar field

dp 1 , .
o(x) = / p3 (azewx + ape*’px> , (14.6)



9, o)) :/ (jjf))?’ / (;i(ig (la} agle™ = + [a,, afle~rotiav)

d’p 1 —ip(z—y) | ip(y—=)
L/(Qﬁﬁ2wp<_e + )

d4 —ip(x— 7 —x
d’Ap o 5 9000 —i(A™ pa—y) | —i(A" pa—y)
_ (277)4( —m)@(p)( PT=Y) | o p y)
4
detA_l/(dzA)]i(;(pQ_m2)@(p0)( (PA@—y)) 4 —ilpAw y)))
Y8

If (x — y)? < 0, we can choose A such that (A(z —y))? = 0, which gives

(z—y)*<0 dp 1 i (F—7) B E—1)
> lola) o) L [ SR (eme 4 emei) o, (14.8)
(2m)3 2wy, ( )

14.2.2 Dirac field

dp 1 : .
() = / T— > [ua(p)aa(p)e‘”””+va(p)b§(p)em} , (14.9)
(27T) 2wp o=%1
Choose canonical commutation of anti commutation relations? We denote the anticommutator as [-, -]+

and continue the calculation to see the result.

w6 = [ 50 v e > (¢ gl ) o). ot

_i_ezp:rflqug (p)va,(q) [b]; (p), by (Q)]:I:) .

(14.10)

We set
[GU(P), aa’]:t = (277)3500’6(3) (ﬁ_ @

[b.(p), b (@) = £(27)38546®) (5 — ) ,

where we notice that what important is the relative sign, so we can fix the result at the first line. We will

(14.11)

determine the sign (commutator or anti-commutator) later. We also need to finish the spin sum,

Zua Jul, ZL st (k)ub (k) L(p) (14.12)
with
1 0
zg:ug(k)uj,(k)_\/m ? +vm(1 0 1 0)+vm (1) vim(o 1 0 1)
. . (14.13)
:m<i i) =m (Laxa +7°) ,
the spin sum reduces to
Y uo(p)ub(p) = m (L(p)s7 Lp)s" 7 +1°) (14.14)



where we used (7°)? = 1. With A71y#A = A¥ 4,

L(p)s?°Lp)g" = L7 (p)°, ", (14.15)
with L_l(p)ou =22 we have
> us(p)ub(p) = (p+m)°. (14.16)
Likewise
> ve(p)vh(p) = Lip)s > _ v (k)i (k)L (p)s = (p — m)y°, (14.17)

f @Pp 1 ipay) ip(z—y) 0
(), vF )]+ = o C (p+ m) £ P (5 — m)) ¢
(2m)3 2wy,
By 1 (14.18)
— (i T — P 1 ([ —ip(@—y) o jip(z—y)) A0
O A = et GRS ) E
In order to let result vanishes when the fields are space-like separated, we need to anticommutator [, -] .

Remark 14.2. Recall the specific form of u(k) and v(k). It is good under the parity and time reversal

transformation.

We need to impose

{as(p), b, (@)} = las(p), al ()1 = (27)*050: 8P (5 - ), (14.19)

and likewise for anti particles. We then extend to equal time canonical anti-commutator relations

{as(p), a0 (0)} = {al(p), al, ()} = 0 = {ao(p), bor (@)} = ... (14.20)

It gives,
{v(2),¢¥(y)} =0, (14.21)

which forces a modification of the definition of the time-ordering of fermions. For (z — y)? < 0
T {v@wi )} = 7 {~s' e} = -7 {v'wu@} (14.22)
where the last equal comes from the linearity of time order product. If we denote ¥ = 1), 1)t

= T{Y(71),...,V(zn)} = sgn(o) ¥ (251)) - - Y(To(m)) 5 (14.23)

where xg(l) > ...xg(n), sgn(o) = (—1)

# of transposition to get o

Example 14.1.
T{y (@) (y)} = 0z —y*)b()v(y) — Oy’ — 2°)y(y)v(z). (14.24)
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14.3 Time ordering for interacting fields

Time ordering prescription is Lorentz invariant. For interacting fields, it becomes

(017 {o(@1) .. @o(wn)et | D' o)

(0|7 {eifﬂmd%} 10) (14.25)

QT A{P(x1)...P(zn)} Q) =

We need to extend the relation to matrix element between arbitrary basis vectors, it is straightforward for

choice of in/out states as basis.
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Chapter 15
Quantum Electrodynamics

The Lagrangian we focus on is the QED Lagrangian with the minimal coupling to photon

. 1
L=y (i) —m)y— 1" s with Dy = 0, +iedy .

15.1 The Dirac propagator

We want to first compute
(0 7 {a(0)¢5(2)} |0)

where «, 8 are spinor indices. The vacuum expectation value is

OO = [ s s v
:/ d3p 1 d3q €

(2m)3 | /2w, (27)3 \/EZU?(M

d3 1 d3 etz o
- / P : S w2 (p)i, (9) (2) 50 6 (7 — O

@27) /2y 27)° \/20q
d3p eip:c N 5
:/WMZUJ(P)%(I?),

o

d3p 1 d3q 6iq:v N ~
5 > " ug(p)al,(q) (0] ag(p)al,(q) |0)
7 5o

Notice that we finish the spin sum before,
> uz () (p) = (P +mas

we have

3 -
O 0)75(a) 0) = (=i8 +-m)os [ 5.
Similarly,
(0165 (a0 [0) = [ L2 LU v 358510 (0) (0] bo (W) (4) [0)
S verivor i PR RS

dp 1 -
= —(—3 —1pT
( z$+m)a5/ on)? pre ;
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(15.1)

(15.2)

(15.3)

(15.4)

(15.5)

(15.6)



then the time order product is

(01 7 {#(0)(x) } [0) = (0] 1(0)2b(x) |0) ©(—t) — (0] (2)3(0) [0) O(t)

. d3p ePTO(—t) 4+ e~ PTO(t (15.7)
:(—z$+m)/(27§3 ( >2:p ®)

Here the 9; will act on the Heaviside function, adding ¢ function term. However, it is cancelled with each

other so we can safely move the derivative out of the whole term. Using the formula (5.8]), we write

d4p jetpr

017 {p)3@)} 10) = (i m) [ B
p
:/ dp i(p+m) Jive
( |

2m)4 p? — m? + ie

(15.8)

By translation invariance of the vacuum, i.e. e’?*|0) = |0), we have

4 ie'rr
017 (i@} 10) = it m) [ 5Bt
_ / d'p i(p+m) otP(E—y)

(2m)* p2 — m? + ie

(15.9)

The graphical description is

Va(z) —— Ya(y) (15.10)

15.2 LSZ and external propagator

The LSZ reduction formula of QED is

(15.11)

—
QL
=
8
®|
<
P
O
4
3
N
&\
&
I

24

Pay attention that the plus sign of e””® means the outgoing particle while the minus sign means the

incoming particle. We need to project the field onto state of given spins, by using

Ug(p)uo (p) = 2Mbser = — 004 (P)vor (D) (15.12)
the summation will select the given spin we want, then we have

« For incoming particle (af(—o0)), insert ¢(z)u,(p)/2m.
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« For incoming anti-particle (bT(—o0)), insert —v, (p)v(x)/2m.
o For outgoing particle (a(o0)), insert uq(p)y(x)/2m.
« For outgoing anti-particle (b(c0)), insert —(x)v,(p)/2m.

Example 15.1. For concreteness we check one example to see what happen if we do the insertion. For

instance, we check the effect of 1 (x)uy(p)/2m insertion (incoming particle),

i/d4:ce_ipm(D +m2)1/_;(x)%ug(p)

, dtq ilg+m) 1
. 4,. —ipr/ 2 2 iq(z—y) =
N z/d xe P (—p +m)/(27r)4q2—m2—|—iee 2mug(q)

i(p+m) 1
P2

_ e—z’py%(}iﬁ + m)ue(p)

- 15.13
= ie” P (=p* +m?) s o s (p) (15.13)
= e ()

where we evaluate this expression with 1 and their contractions, also the (p — m)us(p) = 0. We set the

incoming momentum is on-shell. The propagator is amputated and replaced by polarization tensor.
Analogous computations for the other three cases yield the effect of insertions.
e Place external momentum on-shell

o amputate propagator, replace by appropriate Dirac polarization tensor

15.3 Momentum space Feynman rules

15.3.1 Propagators

e The photon propagator

p .
> _ .t DuPbv (15.14)
,LL 14 p2 + iﬁ gM ( é-) p2
e The Fermion propagator
p .
c N i(p+m)ap 15.15
Tpl@) > tal) = 5 (15.15)

op2—m2 e’
15.3.2 External lines
Again, the dot means the external point (the graph or the flow ends at this point).

¢ Incoming photon

— | (15.16)



e Outgoing photon

p
e = €50). (15.17)
o Incoming particle (fermion)
s ) (15.18)
——p— — Yo
o Incoming antiparticle (fermion)
p
. (15.19)
o Outgoing particle (fermion)
e - (15.20)
—_———e o
o Outgoing antiparticle (fermion)
p
— ) (15.21)
15.3.3 Vertices
The corresponding interaction Lagrangian is %, = —ezﬁ’y“@/}A#, we have the trivalent vertex taking the

value

-
e e
YT T pl\ =...=—iey". (15.22)
/p2
et

15.3.4 Index contractions

e 1 of v* contracts with

— g"” and the gauge term of the photon propagator.
— polarization tensor e*, e** of external photons.

e The spinor indices, which can be made explicit by writing L = —611_}&75/31/1514“, generates the

graph
o g

— 1
- = g (15.23)

contracts with
— Dirac propagator

_ Pt mas (15.24)
P2 —m? +ie

— external spinors.
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15.3.5 Sign 1

We need to be careful about the relative signs due to
T{U(@)V(y)} = —-T{¥(y)¥(z)} . (15.25)

To be safe, we start with some ordering or fields inside .77, then reorder keeping track of signs to have the

fermionic fields that are contracted next to each other, in the order W (z)W¥(y).

15.3.6 Example: Mgller scattering

Mgller scattering: e"e~ — e~ e~. We have the following two Feynman diagrams,

(& e
Y s |
iy = pL—ps = (—ie)Qﬂ(ps)v“U(pl)ﬂ(m)VVU(pa)%, (15.26)
pz/v \p4
e e
p3
iy = pl\ e P4 = —(—ie)zﬂ(m)v“u(pl)ﬂ(ps)’VVU(pz)ﬂ 15.27
s RN (p1 — pa)?’ (15.27)
/.
e e

where we temporarily hide the spin label o on spinors and pay attention the red minus sign comes from the
anti-commutation of the Dirac field. Now we explicitly check the minus relative sign. Choose a random

order

<Q‘ T {was <m3)1/;a1 (371)1/1a4 (9?4)%2 (xQ)} ’Q>
S () 9{%3 () Bany (1) ey (24) Py (2) (—i) / ALz () At () / d4yzz<y>Aw<y>} 0)

(15.28)
- (—i€)2’ygl/82’yg&84/d4x/d4y
(0] T {tas (23)Vay (21) ey (Ta)Yas (22) (%) 5, ¥ () 5,0 () 500 () 5 A (2) Au () } 0)
For t-channel , the contraction align would be
Yas (€3)1, (2)1 8, (€)Y (21) Y0y (£2)0(Y) 35 (¥) 5, (22) s (15.29)
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with no extra sign (g, ¥, moves as a block). For u-channel (15.27), the contraction is

—Vay (m4)1ﬁ51 (x)wﬁb (x)&oq <x1)¢a3 ($3)¢<y)ﬁ3¢(y)ﬁ41ﬁ($2)a2 (15'30)

is indeed with a extra sign.

15.3.7 Signs for fermion loops

A pyH1) fermion pair is separated when evaluating fermion loops.

(15.31)

The contraction looks like

(—i€)* Y, 0y V8 O1 T { Ap(2) Au () () ay ()3, () U3, (1) } 10)

_ (15.32)
— _¢,32 (y)¢a1 ($)¢a2 (:U)¢,31 (y) .

15.3.8 Sign II

Sign rules: a relative sign appears
e For each exchange of external fermions.

e For each fermion loop.

15.4 efe” — putp~ scattering (and spin sums)
Any electrically charged fermion contributes to the Lagrangian via

In this scattering process, (). = —1, m, = 511KeV, which is the electron. @, = —1, m, = 106MeV, which

is the muon. The Feynman diagram is

\Ijl p?/ —i (gpu - (1- 5)%”)

\{94 = (—ie)*Ve(p2) 7 ue (P1) Uy (p3)7 vy (1) (p1 + p2)?

; (15.34)
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the £-dependence can be extracted as

Ve(p2) (P, + Py)te(p1) = Te(p2)(me — me)ue(pr1) = 0, (15.35)

where we use (p — m)u(p) = v(p)(p + m) = 0. Likewise for the second spinor bilinear, {-dependence
vanishes. To obtain the cross-section, need |.Z|> = .4 .4,

(Te(P2)y"ue (1))’ = ue(p1) (7)1 (7°) Fve(p2) = we(p1) 7 9 ve(p2) = Te(p1 )7 ve(p2) | (15.36)

the amplitude is then

e4
[ * = 5 [Be(p2)1"ue(P1)Tyu(D3) 1V (Pa)] [Te(P1) Ve (P2) SV (Pa) Yoty (p3)] (15.37)

Unpolarized Scattering
If we do not measure spin in outgoing channel, we should sum over all outgoing spins,

Z ‘%(0170270’370’4)‘2 = |%|121npolarized : (1538)

03,04

All the polarization related to muon should be sum over,

4
e _ _
[ npotarized = —5 0 (P2)1 e (P1)Tie (P1)7" ve(p2)

X D AT () apv G U (1) 45U

0304

(15.39)

with

D u(p3)a’(p3) = py+m, > v (pa)0%(pa) = p, —m. (15.40)
the summation reduces to

X Z ug! (Vp)aﬁvgzlﬁgél (’Vu)véugg
7874 (15.41)
- (st + m)‘sa(%)a@’@ﬁ —m)gy(Ww)sy =Tr (Pg + mu)%(lm — M)V

Averaging over incoming spinors

If incoming beams are unpolarized: density matrix with equal probability 1/2 for either spin, we need to

sum over the spins, weighted by (1/2)2. Thus the result is

64
LD = ST [, o (B — me)] T [+ m) v (p, — m]
spins (1542)
2¢4
ra

[u? + % + ds(mZ +m?2) — 2(mZ +m2)?] .
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The differential cross section in center mass frame for 2 — 2 scattering is

do 1 ‘ﬁf‘ 2
—_— = M. 154
(dQ)CM 6472 EL,, Fh (15.43)

In ultra-relativistic limit me,m, < E,

do a? 9
— =—(1 g). 15.44
(dQ>CM 4E%M( Feos0) 544
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Chapter 16

Path Integral

16.1 Warm up: quantum mechanics in 1D system via path integral
Typically H(z,p) = % + V(x), with canonical commutation relation [Z,p|] = i. For more general H, we

choose to order operators with p to the left of Z. In Heisenberg picture

.’i‘(t) — ethi‘e_th ’
e (16.1)
ﬁ(t) — €ZHtﬁ€_ZHt
states are time-independent, but the eigenstates are time-independent, the corresponding operators are

Zla) =z lz) = 2(t) [2(t)) = 2()et |2) = eBta |2) = x|z, 1) . (16.2)

|z, t) is the eigenstate of the eigenvalue = of operator &(t). The task (with application to QFT) is that for

given two eigenstates |x), |2) of Z, evaluate (2, tf|x, ;).

<x',tf’x,ti> _ <x/’ ot (tr—t) z) | (16.3)
First, assume At = t; —t; < 1, we can use the linear approximation of e =4t
oy N Aol i (e 0| —iH (z,p)At
’ » ) T ) - . .
(@', t; + At|z, t;) = (o' | 1 — iH (2, p) At |z) = (2'] e |z) (16.4)

Introducing 1 = [ |p) (p|, we have

— [ o (a/lp) (ol D )

1N\, .
— d eipT 7zpzesz(x,p)At
/ p<\/27r>

1  p? (!
_ e—zV(x)At/dpe—zzmAt-‘rzp(x —x)
2m

w1 g () v
= Eﬁe ,
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where the factor in the exponential is the Lagrangian L (m, fo) For finite time ¢y — ¢;, the strategy is
to divide the internal into (n + 1) pieces: t; —t; = (n 4+ 1)At. Introduce at each t;, = t; + kAt,

1= /dm |z} (z] = et /da: |z) (| et = /dx\g;,tk> (z, b4 - (16.6)

, Z> = /dwl cody <x’,tf‘a:n,tn> (Tpytp|Tn—1,tn—1)...(T1,t1]T4, ;)

, Y - (16.7)
:Nn+1/dl‘1...dxn61At[L<w"’ n+ L(I“ Atl))] ,

N

where N = /2% _1__ String together z1,...,z, into differentiable functio x(t) with z(t;) = z, z(ty) =
a’. Define a measure D(x(t)) on this space of differentiable function

D(x(t) = lim ] d=: (16.8)
=1
such that " ot
£)= f) =z .
N/ lft dtL(@,E) N/ Da(t)e’ . (16.9)
iS/h.

Remark 16.1. In classical limit h — 0, stationary phase argument applies to e Path integral is

dominated by stationary phase of S, i.e. by classical trajectory (solution of EoM).

16.2 Path integral in QFT (bosonic)

16.2.1 Completeness relation in QFT

One particle quantum mechanics: the eigenbasis of Z is & |z) = x |z). In the n particle quantum mechanics,
the eigenbasis of z; is

Tilrr, .o xn) = |21, ) (16.10)

with [#;,#;] = 0. The QFT eigenbasis of ¢(x) (where the continuous index plays the role of 7),

(x0) {d()}) = ¢(@0) {o(&)}) - (16.11)

The completeness relation expressed via functional integral

1= /®¢>($) {o(x)}) {o(@)} - (16.12)
Likewise, @ (Zo) [{m(x)}) = 7(Zo) |[{7(Z)}). By

[b(x), 7(7)] = 6 (& —7) (16.13)

{m(@)}{o(2)}) = exp [—i/dgfvﬂ(x)qb(w)] : (16.14)

!The mathematical process here is not rigorous, which might be the root reason of the divergence of path integral. Too
many curves are added into the integration.
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Also, $(&)(t) = 3, 1) = e o(@)e ", |{(@)}.1) = 1 |{9()}),

(Z,tp)=9¢'(Z) .
= ({d@)ty{e@}.ti) =N / ®¢<f,t>elfd“xﬁm<¢@¢>,

where

DP(Z,t) = lim Hqul

n—o0

16.2.2 Time ordered product

If ¢(x;,t;) is the eigenvalue of (Jg(l'j,tj). What is

/ D7, )50 3(7;,47) ?

Follow the argument reversed,

(16.15)

(16.16)

(16.17)

/Hﬂﬁbk(f)<{¢/(f)}vtf|e_iﬁAt|{¢n(f)}atn>---e_iﬁAtQS(fj’tj) {e;(@)}t5) .. {o1(@)}, til{o(@)} 1) -
k

(16.18)

Notice that ¢(Z;,t;) |{¢;(@)},t;) = 6(Fj,t;) [{¢;(£)},t;), and collapse all completeness relation, the final

result is
{8 (@)}, 15| D&, 1)) {O(E)}, 1) -
Likewise,
N [ Dot 0 ot 0)
j=1
<{¢’(f)},tj9{ﬂ¢(wg, )} {o(@)},t:) .
j=1

The time ordering is naturally emerged!

16.2.3 Projecting onto the vacuum

By inserting the completeness relation

Q7 {dw1) .. dlaa) }12) =
[ 24@D6(@) (U6 @) 20) ('@}, 00| 7 {3a) ..ol } 6@} ) ({6(@)}, o619
Define

My = (Q{#(@)}, 00)
My = {o(T)}, oo|9>

(&,+00)=¢'(z)

(& @)}00| 7 {Bln) ... e } 6@} 00) = N / Do(7, 0 | ol

$(7,—00)=¢(2)
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(16.20)

(16.21)
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the expression can be written as
/ DH(&, t). My Mo [ ] b)) (16.23)
J

The integral region is unconfined. In Weinberg’s book [2], for the factor My My, we can argue that the
final effect is adding the —ie¢? term to .Z. So we conclude that

J Do(a, 1)V o))

5 5 = 16.24
17 {bar) - dan) } 1) TDoE e (16.24)
with normalization (Q|Q) = 1 and .& is modified by —ie$? term.
16.3 The generating functional (and how to compute)
Define generating functional (also partition function coupled to an external source,
ZlJ) = / Deexp [iS[qZ)] + i / d4xJ(az)¢>(:c)} : (16.25)
where J(z) is the external current. We define the functional derivative as derivative satisfying
LJ(@«) =Wz —y) (16.26)
6. (y) ’
such that 5
—— [ d*zo(x)J(x) = d(y). 16.27
5707 [ Ao @ = o) (16.27)
Then
. 1 o"Z[J]
= QT zi) o |Q) = (—=i)" . 16.28
16.3.1 Computing Z[J] in free theory - Gaussian integral
In free theory,
1
ZJ] = /D¢exp [z’/d% (—qu (O+m? —ie) ¢+ J(a:)qb(x))} : (16.29)
Evaluate this expression by taking n — oo limit, with formula
oo +oo D 1 (2m)™ 1 -1
T Agri iz 5Ji(A7)i5d;
Remark 16.2. Here we identify the ¢ and x label here.
here A = i(0 + m? — ie) (required for convergence of Gaussian), J; — iJ(x). A~! defined via
, 9\ a1 -1 _ d'p 1 ip(z—y) 16.31
(O +m” —ie) A =d0(z—y)= A =in(z—y)= (27r)4p2—m2+iee , (16.31)
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which is the green function. The final result is
1
Z[J] = Z[0] exp [i/d4x/d4y2J(x)ﬂ'(z - y)J(y)] . (16.32)

16.3.2 Feynman rules for free theory via path integral

The two point function is

1 52
0| 7 {o(x 22)}|0) = (—4)? ZJ
0 1 . (16.33)
2 4 .
=(—1 ——(—1 dxJ(x)n(x —x1)Z|J
5t 7 [ @t ez
=im(z1 — x2),
which exactly reproduces the results from canonical propagator.
16.3.3 Evaluation of path integral in interacting theory
In the interacting theory,
; ; | D@, 1)eS 1T, d(ay)
QO 9{ . Plan } Q) = 2
< ‘ ¢(.’IJ1) (b(x ) ’ > f@¢(f’ t)ezs[d’}
B @¢ei(50+smt) Hj (b(x])
o f@ei(so+5mt)
» . B (16.34)
[ Dge0 [T p(wi)ermt [ Depe™o
- f D¢ei30 fqueiSOeiSim
(017 {IT; d(w)e™S } [0)
(0] 7 {eiSine} |0)
16.4 Fermionic path integral
The essential ingredient in derivation of bosonic path integral is
o Ja set of eigenbasis of ¢ of z,p, with [, p] = i, have the complete relation
1= [ delo) (el = [ anlp) o] (16.35)
o (p|lz) oc e7P%,
In fermionic theory, the canonical operators §;, p; satisfy anticommutation relations {¢;,p;} = id;j,
Remark 16.3. No non-trivial eigenstate to G;, p;.
Proof: Assume that |qi,...,qy) is such a state, then
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in another direction

Gidilat, - an) = —qidi |1, - - -, qn) = —4iqj |q1, - - - 1 qn) (16.37)
= ¢q; =0, (16.38)

where there indeed exist a problem.

16.4.1 Construction of representation space of fermionic operator algebra
o Let |0) be annihilated by all ¢;, ¢; |0) = 0.

o Define 7 = (|0),p; [0) ,pipj [0) ..., p1...Pn|0) |i < ... < j)c. H7 is clearly closed under the action
of ¢; and p;. To organize states fo 7} in terms of eigenbasis to ¢;, p;. We will introduce anti-

commutating variables.

16.4.2 Grassmann algebra

A Grassmann algebra G, over C:
« a complex vector space generated freely by elements ¢;,¢;q;,q1...qn: 1 <i < ... <j<n.

« an associate anti-commutative product induced by ¢; X ¢; = —¢q; X ¢; with ¢; x ... X ¢j = ¢;...q;
with ¢ < ... <.

We then introduce %’;ﬂ = Gq ®@c H5. Let {q1,...,d4n,P1,---,Dn} act on L%ﬂfq by imposing {¢;, ¢} =
{¢i,p;} = 0, such that

16.4.3 Eigenvectors to ¢; in J7}

We define

n
lq) :==exp | =i > _p;g;| |0)
j=1

¢ iy (¢
= l—iZﬁjq]‘-i-...—i- o Diqj |0) .
=1 '

(16.40)

n

The higher order expansion vanishes because of the Grassmann variables. This is a single state, i.e. ¢ in

|g) does not vary.
n
Gilg) = Giexp | —i Y piq;| 10) = Gi exp(—ipigs) exp | —i ¥ pjq; | |0)
j=1 J#i

= Gi(1 —ipigs) exp [ =i Y pja; | 0) = (G — iipsgs) exp | =Y pia; | [0) (16.41)
J#i J#i

= (Gi — i{di, Pi}ai + iDidiqi) exp | —i > _p;g5 | 10)
J#i
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since ¢; |0) = 0, and ¢; anticommutes with the rest variable, we left with
Gilg) = qiexp | =i > pjg;
J#i
Because qi2 = 0, we can insert the term
Gilg) = ¢i(1 — ipsgi) exp [ =i Y _ piq; | |0)
J#i

n
=giexp | =i ¥ _p;q; | 10) = qilq) -
=1

To define the eigenstates for the p;, we introduce a second set of Grassmann generators {pi, ...

{¢i,p;} ={d,pj} = {Pi,p;} =0. We now work in the Hilbert space
HP = Gyp ®c H .

The eigenstates for p; defined by

n N
p) == exp (—z’Z@m) [15:10)
=1 =1

with p; [T, pi |0) = 0. The same discussion will produce
pi|0) = pi |p) -
Finally, define the dual Hilbert space built on (0|, (0| p; = 0 for Vi, and (0|0) = 1 with basis
{(01,(0] G, (0| Gidj, - -, (O] G1 - - Gu]l <i<...<j<nm}.

And eigenstate

(al = O] ] dsexp (*izqz‘ﬁi) (4l ={da,
=1
(| = (Olexp (=i > pids) (bl i = (ol pi-

We need to evaluate (¢|p),
(alp) = (gl exp (—iZdipi> [15:10) =exp (—z’Zqipi) (ql T ] #:10)
i=1 =1 i=1 i=1
= exp (—z’ Zqipi> O [T dvexp (=i " aipe) [T 5:10) -
i=1 i=1 i=1
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(16.42)

(16.43)

,Pn} with

(16.44)

(16.45)

(16.46)

(16.47)

(16.48)

(16.49)



because of the fermionic property, only the zero order term in the exponential left, then

(alp) = exp <—izqipi> O T @ [[5:10) = xnexp <_iZQipi> , (16.50)

i=1 i=1 =1 i=1

where ¥, is the phase factor depends on n. Likewise,
(plq) oc ™" =Pidt. (16.51)

16.4.4 Berezin integration

Note that both |¢) and |p) are linear combinations (with Grassmann coefficients) of all the states

|0), pi[0), ..., P1...Pn|0) . (16.52)
to access a given state in .77, we want a tool which isolates a given coefficient of Grassmann generators.
Remark 16.4. In usual Hilbert space, innerproduct with the orthogonal basis can give us the coefficients.

Definition 16.1. [dg;, ...dgj, acts on %’}q’p ® Hoson Via

/dq1f(Q1u-~7Qn) = /dQ1 (co(ga;---»qn) + q1ci(qe. .-, qn)) = c1(q2; - -, qn) (16.53)
and

/dql.../dqnf:/dql<...</dqnf>...>. (16.54)

In particular,
/dqjl---dqijinO, it {j1,....im} € 1. (16.55)

i€l

Example 16.1.

/ dg1dgs (aq1 + bq1q2 + cq1G2q3) = —b — cqs . (16.56)

Theorem 16.1.

1= [ [ dala)al. (16.57)
=1

where X" is the n-dependent phase. This is the fermionic completeness relation.

Proof: Consider |f) = p;1...px|0) (without loss of generality),

n
(alf) = O T dsexo (=i aibs) b .54 |0)
i=1
16.58
n (_i)nfk: n n—Fk ( )
= <0‘H(hm Zq@'pi p1-.. Pk |0)
i=1 =1
this step needs a little more explanation. First, since we have p; for ¢ < k, if the order is lager that n — k,

there must exists m (m < k) such that p,, appears twice at least, causing the expression vanished. If the
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order is less than n — k, there must exists [ such that p; doesn’t appear in the expression. However, ¢;
anticommutes with all the other terms, and we could move it to the position next to the |0) (up to a sign

difference), annihilating the state. So only the (n — k)-th order term survives. Continue the calculation
n
= (=) (0[] @it - - - Prars1Prs1 - - Gnbn |0) (16.59)
where we use the property that g;p; moves as a block, which doesn’t change the sign. So

= (=i)" (=) 2R o T @ipr - - 50 10) Gt - - (16.60)
=1

Weset A=1+4+2+...4+ (n—k) and x5, = (0| [[;; ¢iP1 - - - Pn |0), substitute into the integral, we have

(—i)"H(=1)Ay, / TT dai 19) arsr - -dn (16.61)

i=1
with definition of |¢) = exp (—i > ﬁjqj) |0), only the k-th order terms survive. We have

(—i)n_k(—l)AXn/quz'(—i)kﬁlm -+ Pk [0) Qr+1 - - - Gn
i=1

— (=) (~1)"xn / [Tan 0000y (16.62)

— (i) (1) T /quz ) 1) = Tl f) -

We finish the proof.

16.4.5 Fermionic matrix elements via path integral

Introduce §;(t) = etge=1t p;(t) = elp;e~Ht the eigenstate for these operators are

lq.t) = e q), Ip,t) = € |p) . (16.63)

Now we want to evaluate (¢’,ts|q,t;), where ¢’ represents the second set of Grassmann generators ¢;. The
strategy is similar to the bosonic case. Divide the finite time into infinitesimal piece ty —t; = (N + 1)At,
introduce the completeness relation for a set of Grassmann variables {qf}zzln at each point tp = t; +kAt.
Then

k zqi+1 —qz - 11
(¢ ty]q.t:) —/quzdleeXp zAtZ Hp'q) )] - (16.64)

Now take the limit At — 0, and introduce the independent Grassmann generators indexed by a continuous

variable ¢:

{Q£€}i:1,...,n = {ai(t) }i=1,..n o} = {pi(1)}, (16.65)
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such that
(d.tr|g.t:) :/Hin(t)HDpi(t) exp [i/fdt (Zpi(t)q'i(t) —H(pi(t),qi(t))>] . (16.66)
i=1 i=1 ti i

Remark 16.5. Unlike the bosonic case, in which H is quadratic in the canonical variable p. Because the

property of the Grassmann number, we do not perform the Dp;(t) integral as H, L are generically linear in

b, q.

16.4.6 Evaluation of fermionic path integral

Define generating function by coupling to fermionic (i.e. anti-commuting) currents,

Z[57, 9 = /H@qi(t)Hﬂpi(t) exp (z’S—l—i/dtZ(pijf—i-jiqqi)) : (16.67)

Besides, we introduce derivation with Grassmann variables,

O 1= () G gig q
- qn = (— 1---9i-157—9iGi+1---qn
9q; Ogi " (16.68)
=(-D""q g1t G-
The variation with respect to the current is
i0 i0 —id —id
I : T gl Y =
ST Shulbn) 67a () 07800
m K (16.69)
/ [12a® [T De:) [T pr(te) [T as(ts) exp |iS +i / dt > (piff + jla)
r=1 s=m-+1 3
Z[4P, j9] can be evaluated for S of the form —p;A;rqx,
/ 1T da: I ] dpi exp (=piAinar + pis? + ifa:)
(16.70)
= / 1T da: [T dpiexp (—(0 — 5947 )i Ain(q — A 157k + 5L A7 57) -
Notice that for f(q) = a + bg, we have
[adatta+) = [data+va+9) = [aar@, (16.71)

we have . i
T LR s O o R
/ HinEdpie pwae = () / 11 da: [T dpi(piAiran)™, (16.72)

where only the n order left because of the integration property. Here the repeated i, k indices mean the

summation. Rearranging the summation order, because p; A;rqr moves as a block and doesn’t change the
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sign, we can rewrite the expression.

- (_ﬁyl/HinHdpi"! Z (PnAninGiy) - - - (P1 A1, i)

{ilv"'vin}
(n 1)n
= (—1)"( /quszpzpnpn Lt Y Aniy A, iy
{ilv 1in}

— (_ n (” 1 /quz Z An Zn ) Al Zlqzn o Z (1673)

{21, 77'71}
n (n l

:(_ /Hd(h Z Anzn- Alzl( ) Gn ---q1
{7’17 7Z’ﬂ}

= (1) det A,

where o is the number of the transposition, which can combine with the element of A and give the

determinant of A. So the integral is

/ [T dai T dpe et tpial tita = (—1) ™5™ det Aei! (A Dask (16.74)

16.4.7 The fermionic path integral in QFT

At a given time interval, we introduce a continuous family of Grassmann variables {¢(Z,t)}, indexed by

the spatial vector Z € R?, with conjugate variables {¢)'(Z,t)}. The generating functional is

/iw t)De(Z, 1) exp [ /d4a:1/_1(i¢'9 —m)yY + i + 1/777}

(16.75)
— Z0jesp |1 [t [ a0 —m) i)
where Z[0] = N det (i@ — m) and (i — m)~! is the Dirac propagator.
16.5 Applications
16.5.1 The photon propagator
To obtain the propagator, we need to insert the photon kinetic term, which is
1 v Momentum spacel Y VoAl
_ZFWF — (k A, —kyAy)(KFAY — kY AF)
= §(k2A2 — (k- A% (16.76)

1 14
= —EAM (=k?gu + kuky) A,

however, the complexity raises here because —k2gw, + k,k, is not invertible. It is easy to justify because

the eigenvector k* has eigenvalue 0. This is the consequence of the gauge invariance. A perturbation of
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this operator renders it invertible.

1
—kgu + kuky, — —k2g + (1 — = ) kuk, . 16.77
w W w )
With inverse .
I, = 9 = (12—5) Eh (16.78)
14 k bl

which is exactly the photon propagator in £-gauge. We are going the explain where the perturbation comes
from via path integral. How to justify the perturbation? It can be introduced by adding i(@MA“)Q to the

Lagrangian.
Theorem 16.2. This term doesn’t modify the time order product of gauge invariant operator.

Proof: Consider the function

F(6) = / Dre o (@) (16.79)
For fixed A*(x), we perform the change of variables
1
m(x) = w(z) — EﬁuA“, (16.80)

where the last term represents the solution for Oa = 9, A*. This is a shift. The measure will run through

all the possible fields so the measure won’t change. Then

£ :/@mifd‘*%ls(maﬂf‘“y. (16.81)
It looks like that it depends on A¥, but the integral doesn’t because A* doesn’t appear in the initial
definition of f(§). Next, let 0 (z1,...,2zy) be a gauge invariant product of operator. We consider
A 1 : ok
Q.7 {ﬁ(ﬂﬂl, oy wn)} |€2) = Z[O]/QAHD@H®¢f€zfd4I$[A’¢“¢i}ﬁ(m1, e Tn) (16.82)

where ¢; and ¢; are both charged fields. Insert the function f(§), we have

=~ [ DaDAT[De; [ Dotet | “eZ1A0001 -2 Om-0uA G Y. 16.83
s | 22l Da J] 20 (01,1 0) (16.83)

To decouple m and A*, we perform a gauge transformation with gauge parameter m,
Ay — Ay +0um, ¢ =9, (16.84)
By gauge invariance of .Z and &, the integral becomes,

Q7 {61, w0) } 1) =

1 / i [ BT L[A G b~k (0, A2
———— | DDA | D¢; | | Do;e TR O(x1,...,%n) .
2017 (@) [I7e1] (1)

(16.85)
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Performing the same manipulation for Z[0] yields,
1 ; CpF— L
200 = 55 / DrDAJ[ Doy [[ Dggel | ¢ 1000l =2e @u)? (16.86)

The factor ﬁ@ﬂ' cancels and the Lagrangian is modified

1

LA, ¢i, 7] = ZL[A, ¢, 7] — %

(9,A")%. (16.87)

16.5.2 The Ward-Takahashi identity

Consider the theory with global symmetry ¢ — €'®1) for v, which is a Dirac spinor. The propagator

17 {(Wle)ite)}10) = 5 [ Dovixen|i [ ate iy - my-+v)| we)itm), 1058)

where DX is the measure part of the other fields which aren’t relate to the Dirac spinor. Y is the Lagrangian

term doesn’t include 1, . Consider field redefinition,

Plx) = ey
DYDY — DYDp

(i@ — m)y — (i — m)y + Py d,a(x) (16.89)
DX,Y — DX,Y

(1) (w2) — e~ OTITE) (1) ()

Now expand in «. Because the theory has global symmetry, now the a(x) transformation is local, and the

higher derivative (higher than zero order) part should be zero.

1 7 i , y . . - _
Z[O]/DU)@U)@Xe Sexp [z/d‘lxwv Yoo(x) — ta(zr) + zoz(xg)] P(z1)Y(x2) = 0. (16.90)

With definition j# = 1y, the part in the exponential function can be rewritten as

[i/d‘lxw’y“di)ﬂa(m) —ia(zy) + ia(a:g)] = —i/d4xa(m) {(%j“(a:) +0W (2 —21) — 6W (2 — x9)| ,
(16.91)

a(z) is arbitrary, then we have the following relation

Zﬁﬂ / DYDYDX e'50,j1) (1) (w2) = Z%O] [—6(z — 21) + 6(x — z9)] / DY DPDX ™) (w1)(x2),
(16.92)

which is equivalent to

© 0, (Q T {"(21)P(22) } Q) = [-6(2 — 21) + (2 — 22)]{Q] T {W(21)(2)} ) . (16.93)
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Introducing the Fourier transformation,

MM (p,q1,q2) = /d%/d%l/615456261”"”3%“gﬁlJmm2 Q.7 {9 (z1)0(w2) } )
M(q1,q2) = /614961/al431?2€iql‘/’31Hqﬂ2 Q7 {¢(z1)(x2) } ) .

After Fourier transformation,

= /d4x/d4x1/d4xgeim“q“”1”q2x28M Q.7 {j*h(x1)0(w2) } [Q) = —ippdt (p, 1, 42)
= /d4x/d4$1/d4wgeim+iq”1+iq2x2[—(5(56 —z1) +0(z — 22)](Q T {¢($1)T/_J($2)} |€2)
_ /d4:p1d41:2 [_ei(p+q1)m1+iqzz2 + eiq1r1+i(p+q2)fﬂ2] Q7 {@p(xl)@fz(azg)} |2)
=—AMp+aq,q)+A(q,p+ae).
We get the Ward-Takahashi identity
ipu At (p,q1,q02) = M (q1 +p,q2) — A (q1,92 + D) -

Resuming the argument with the insertion
oritn =TT 5% @) [Tt [T ¢(z0) -

The corresponding Fourier transformation variables are x; <> p;, ¥; <> ¢, z; <> 73, and define

%H#Lnﬂk(p’pl’ s Plyqly - 54151 ,T‘m) =
/d4xdﬂeipx+izipixi+i D Gyt riz <Q| g{ju(x)ﬁul...un} |Q> ,

where du = [ d*x; [] d*y; [T d*z;. And

(D D Qs Qs T -y Tm) = /dueizipmi—&-izi @Gyt > Tz Q| 7 {oM-+1 Q) .

Those yields the generalized Ward-Takahashi identity
ip,u'%u,ul s g = ip“'%ﬂﬂl---lﬁk(p7p17 <Pk 41y -5 45T, - Tm)

l
:Z%ulmuk(pla"'vpk7Q17'"7Qi+p7"'7qlarla"-7r’m)_
i=1

m
Z///m'“uk(p,pla---apk,Qb'--,QIaTl»-uﬂ"i +p,--.,7‘m).
i=1

(16.94)

(16.95)

(16.96)

(16.97)

(16.98)

(16.99)

(16.100)

Note that the momentum p; associated to the current insertions are not shifted, as these are invariant

under the action ¢ — e @),
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16.5.3 Reduction to Ward identity in QED

In the process of reducing the Ward-Takahashi identity to Ward identity, replacing the photon polarization
tensor €#(p) in our S-matrix element by p* yields zero. Recall that ¢#(p) and e (p) + cp* should be physi-
cally equivalent required by the gauge invariance. We now prove the Ward identity using Ward-Takahashi

identity now.

Proof:
we will focus on outgoing photons for simplifying the notation. Consider an S-matrix with &+ 1 such pho-

tons, and an arbitrary number (g) of in and outgoing electrons and positrons. By LSZ reduction formula,

k
p)HsM(pi) [i/d4azeipxmz <Hi/d4a:ieipiximwi> X ]
i=1

X (Q] T {AM(2) A (1) ... AP (2) X} |Q)

we have

(16.101)

where X includes all the 1, ¢-dependent terms. In Lorenz gauge, the EoM of A*(x) are DA = eyrytep = ji.
By Schwinger-Dyson equation

k
[ 000 (0 7 {A"(2) AP (1) ... A (2) X } | Q)

i=1
k
~Ion 017 {#@ T ax |
J (16.102)
—i 26 —xj)g" (Q] T {4 () .. AL A (1) X} 1)
=7 {j“(az) I_IjM (:L’Z)X} |©2) + contact terms.
i
The connected S-matrix is
k
Seconnected = 6# Hsuz pl /d4xelpx /d4x e Piti <Q| T { ( )H]ltz (l’l)X} |Q>
= . =t (16.103)
=i9e,(p Hem pZH —m? HT — ) (D DL Dy QL ey Qs Ty e e s TT) -
=1 =1
The red part are the poles in the time order product. By replacing € — ip,, we have
k l ]
H eﬂi (pZ) ]‘_[(Qz2 - m2) 1_[(7“12 - mZ)ipM%#ulmluk (p7pla ce s PESqLy -5 41T, e, Tl_)
i=1 i=1 i=1
!
= My PR QL G Dy QT ) (16.104)

_Z'%Hl...“k(pla'"apkvqlv"‘vqlaTh'")Ti—i_p?""rl)‘
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In each summation, one pole is shifted from its on shell value, which means that the term vanishes when

multiplied by appropriate q? —m? or 7"1-2 —

Ward identity

m?, the right hand side of the equation vanishes so we have the

putl’ =0. (16.105)

Remark 16.6. The above argument don’t require p*> = 0. Along similar lines, we can arque that replacing

a photon propagator 11" (k) by kMkY gives zero.

The path integral method shows his power. As a summary, we list several advantages of the path

integral method
e In principle, non-pertubative definition of theory.
e Manifestly Lorentz invariant.
e Quantizing non-Abelian gauge symmetries.

o New perspective on classical (action) vs. quantum (integration measure).
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Chapter 17
Renormalization

Tree diagram becomes disconnected upon cutting any internal lines, this observation follows from the fact
that all momenta are linear combinations of external momenta. However, things are different in loop
diagram. The loop diagrams are generically divergent due to the momentum flow in the internal lines. The

strategy to deal with the divergence is

o parametrize the divergence (e.g. by introducing cut-off), isolated a characteristic finite piece (e.g.

momentum space), this is the regularization scheme.

o absorb it by matching to a (finite) number of measured observables. This is the renormalization

scheme.
— In QED, these observables could be the mass and charge of the electron.

More generally, we choose some observables at a fixed scale A and study the change of couplings as

we vary A, this leads to the idea of renormalization group flow.

Example 17.1. A typical example is ¢ theory, with the Lagrangian £ = —%(Z)(D +m?)p+ %gb?’, the loop

diagram

%loop(p) = [ | ) (171)

which is the building block of a bigger diagram. p is not necessarily on-shell. Based on the Feynman rules,

- 1 ) d4k‘ i 1 k‘sdk?
) 1 ~ [ 22 Cnk, 17.2
i 100p(D) 2(19) / m)* (k—p)2 —m? +ick® —m2 + ie / k4 ! (72

where % is the symmetric factor and the integral is logarithmic divergent. The UV interpretation of this

divergence is that £ is not valued at high energies. Here the estimation is rough, k® comes from the

spherical coordinate Jacobian and k? estimated as the Euclidean innerproduct.
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17.1 The Feynman parameter trick

Product of propagators integrated over a mutual momentum. We consolidate the momentum dependence

by using the Feynman parameter. Notice that

1 /1 1
— = dz ,
A-B Jo [A+(B- A)ux]?

where x is the Feynman parameter. Applying to the integral, we have

_ /d -
AR)BE) ) a2
Example 17.2. In the above loop diagram, we have A = (k — p)? —m? +ie, B = k? —m? + ie,

= A+ (B-Ax=(k-p?—m’+ (K~ (k—p)?) z+ie
= k% — 2pk +p® — m® + (2kp — p*)z + ie
= k% — —2kp(1 — 2) 4+ p*(1 — ) — m® + ie
= (1 —p(1—2)) = pP(1 — 2)? + p*(1 — 2) —m?® +ic
TR+ pP(1 - 2)a —m® e =k — A+,

where A = —(p?(1 — x)x — m?). Then the amplitude
2 4 1
) g d*k / 1
00 == | — | de-——— .
i-ioon(P) = 5 / @0t Jy CE At

17.2 Wick rotation

We want to replace k2 by k%, i.e. by Euclidean product. Consider

/ d’k ! n>1
(2m)* (k2 — A+ i)™’ )

Expand the denominator,

k2 — A +ie= [ko— (M_ieﬂ [k%(@—ieﬂ .

(17.3)

(17.4)

(17.5)

(17.6)

(17.7)

(17.8)

Remark 17.1. Here we redefine the infinitesimal parameter € and take the infinitesimal advantage.

Assume A > 0 for concreteness, The integral contour (z-axis is the k%), is as follows, The integral along

the red contour is zero f() = 0 because it contains no poles. The integral along the arc is also zero because

the function drops off as (k°)~2", then we have

/-I—oo dk,()/ d3]€ 1 - /-‘rioo dkO/ d3k 1
oo (2m)4 (k2 — A +ide)" ) i (2m)* (k2 — A+ i)™

127

(17.9)



~VE2+ A +ie
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\/lzz-l-A—z'e

-
3

Figure 17.1: Integral contour

If we set k¥ = ikQ, (Wick rotation), the integral changes into

oo >k 1
j dk? 17.10
ik [ NI (17.10)

where k2, = (k9,)2 + k2.
Example 17.3. If n = 2, the integration is

(2m)t (k2 — A+ie)? ) (2m)t (kL +A)2 @m)t (k2 + A)2

R (T
4
o (

- l(27r) K2+ A2 "Sr2 A q*
i | A (17.11)
—_ — 1‘ l — —
Sm2 et [n(H 2q2]q:¢5
) 1 1 1
:% lim [=lnc—=InA — =
8T c—>+o00 | 2 2 2

where c is the upper bound and we drop the term % because c is a large number.

17.3 Hard cut-off and Pauli-Villars regularization

Definition 17.1. Hard cut-off is the cut-off at high energy by introducing upper bound A

oS A
/ dk—>/ dk . (17.12)
0 0

The advantage of this cut-off is that it is physically intuitive. The disadvantage is that it breaks the
shift symmetry in momentum and clumsy to work with. The idea of Pauli-Villars regularization is to
introduce fictitious (does not occur at in and out states) heavy (not produced in scattering, does not alter

in low energy physics) particle to cancel the divergences, i.e. modifying UV of the theory.

128



Example 17.4. For ¢3 theory, we introduce a fermionic scalar 1, which will have a minus sign in loops

diagram. It violated the spin-statistics. Such particles are called ghosts, which cannot appear as external

states. The fermionic scalar couples to ¢ via ¢1? of mass A > m. The amplitude is then

d*k 1 d*k 1 d'k 1
/ (2m)4 (k%2 — A +i€)? ~ / 2m)t (k2 — A +ie)2 / (2m)* (k2 — A2 +ie)2

Graphically speaking,

k—p k—p k—p
p ¥~ N p p ¥ -~ p P v —2 P
>/ N = / N + > N >
k k k

(17.13)

In the second integral, we replace A = A?> — p?x(1 — x) by A? because A is much larger than p. Based on

the equation (17.11)), the result is
i A

" lim lhe—ImA—-1-(Inc—InA%-1)] = _ﬁlnﬁ'

1672 c—oo

(17.15)

Notice that the infinite part cancels because of the introduction of fictitious particle. Recovering the variable,

2 1 22001 — ) e .9 1 .2
i//loop(p)zgl/o dmlnm pa( z) ~0_ 9 (/0 dxlnx(l—x)—f—lnA—];

2 1672 A2 3272
. 9 )
SR S o
3272 A2

. A few remarks on this result.

> (17.16)

e By redefining A, we can absorb the constant term, which means that the —2 term is not physical.

e In the logarithm function, the number is minus, this is not reasonable because we use a not good

approximation. But the point of the calculation is to see the disadvantage, we won’t consider it

seriously.

e The dependence ln(—pz/A) on p is not altered by changing A as long as this change is p independent,

which means that we decompose the UV and IR divergence.
There are several disadvantages of Pauli-Villars regularization,

¢ Needs modification at higher loops.

e it is not a gauge invariant regulator, as PV ghost mush have the same Lorentz transformation

properties/charges as particle. It must have large mass, which is incompatible with regularizing

photon.

17.4 Dimensional regularization

This regularization scheme respects the gauge symmetry.
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17.4.1 The idea

In fact, the integral

d'k : 17.17
(27r)d(k2—A+ie)2<oo for d<4. (17.17)

It will logarithmically divergent at d = 4. Inspired by this result, we define the real number dimension d,

and evaluate the integral at d = 4 — ¢, where the € plays the role 1/A. The first thing we need to generalize

/ddk = /Qd/dkkd—l, (17.18)

the k%1 make senses for arbitrary d € R, but the €y needs generalized definition. Mathematically we

+o00 d
</ d:ce‘”2> = /de/drrdle”2 = Qdér <C2l> : (17.19)

where the gamma function is defined as I'(z) = fooo dzz*~le~® for Rez > 0. We know that the result for

is the integral measure

have

the LHS is (y/7)%. T'(n) = (n —1)! for n € N and the negative integers and zero is simple poles of gamma

function upon analytically continuation. Thus, the Q4 for d € R is

27d/2
Q= . (17.20)
T (3)
17.4.2 A useful integral identity
AP C DI (B D
[ —— 17.21
/0 WAy =27 o1 (b) ! (17.21)

where the equal holds in the mutual domain of convergence. Recall the integral we had before and keep
the a, b,

/ddk k2 _,/ddkE (—k%)? _ i )a_b27rd/2 1 T(a+dH)rp-a-9)
( .

omd (k2 —AY ") Cnd(2+ AR T (2m)d Ab-a—df2 2 (b)T (4)

(17.22)

17.4.3 The coupling constant dimension in dimensional regularization

To obtain logs only of dimensionless quantities, we need to keep track of the mass dimension of our coupling
constants. Determine mass dimension of field by containing with kinetic terms and retaining [S] = 0.
d—1 d—2 4—d

W= =" d:[ezﬁA¢]:[e]+(d—1)+g—l - m=34

In d = 4, the charge is dimensionless. We want to keep e dimensionless in d dimension, we introduce a
scalar p such that

e—en's . (17.24)
We replace the coupling constant which e appears in loops by eu% to avoid the logs of dimensionful

quantities. And we maintain e everywhere. The final results shouldn’t depend on p.

130



17.4.4 Logarithmically divergent integrals in dimension regulator

d%k 2t 0= 1 1 T(Hr(2-4¢
/ y e[ : Oib 2M47d62i(_1)2 (2) ( 7 2) 7 (1725)
(2m)4 (k%2 — A + ie) (4m)4/2 A2=d/2 T (2)T (5)
which diverges at d = 4. Set d = 4 — ¢ where € is small, using the expansion of Gamma function
1
D)=« 76+ 0(6), (17.26)

where g is the Euler-Mascheroni constant. This gives

. 9 2—é
4_q e 4—d 1 E
e () () 20

using the expansion (4m)%2? = (4m)>~/% = (47)*(4m)~/% ~ (4m)*(1 + SIndr), pc ~ 1+elnp, I'(§) =
% — g, A2 =1 — SIn A, we have

. 2 2
== JTV [6 + (=g +Inp? +1Indr —InA) + O(e)]
2 o 2 o (17.28)
ie ie
= Z 1 n (4dre VE 2 O _ im0
fege |+ 000 = i (2t o).
where [i%2 = (47re_'YE,u2).
17.5 Renormalizing at the level of the S -matrix
Example 17.5. Vacuum polarization. In QED, a typical loop diagram is
k—p
p K=\ p
i = e
N (17.29)
k

4 i i
=~ [ i T D )

=1 [Al(p2’ m2)p2gﬂl’ + A2(p2a mQ)pMpV] )

with external legs amputated (and not replaced by polarization tensors). The subscript 2 means it is order
2 in coupling. A1 and As are called the form factors, which are functions of momenta (and masses) left
to determine once the kinetics has been taken into account (for non pertubative processes, e.g. in QCD,
determined via measurement). 114" contributes to the dressed photon propagator

4
@ T4 @A W) 9 = [ R ier ). (17.30)
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with

iGH (p) = + +...

(17.31)

_igm/ _ig“p ( ) _igazz

= i — .
P2 tic | p2tie - PTpZ 1 e ’
where we have already chosen the Feynman gauge. Based on the expression of 114", we have
1+ A gt + A, 2R
i (p) = i AV BB (17.32)

p? + i€

Recall by Ward identity, any S-matrixz in which G* will be inserted will be dependent of Ag-term. As
put* =0, we can drop the term proportional to p*p”. Note further, by considering the v — ~ S-matriz,
the Ward identity will give

Py’ =0 = p,[A1(p®, m*)pPgu + Do(p®, m*)pHp”] =0

' (17.33)
= Ap”pY + Dop?p’ =0 = Ay =—Ay.
We can check it by explicit calculation.
17.5.1 Regularizing the divergence
Following the route about calculating the integral (exercise)
e evaluate the trace,
e introducing Feynman parameters,
e dropped term proportional to pp”,
e performing dimensional regularization,
we have
iy (p%) = i(—pg")e*Ta(p?) + p*p”-terms, (17.34)
where . . ) i
Iy (p?) = 2772/0 dxx(l —x) L +1In " pgx(l — ) (17.35)

with ji? = 4me B p.

17.5.2 Renormalizing vacuum polarization by computing 2-2 scattering to experiment
The dressed propagator

11— eZHQ(p2)
B Sl VA

iGH =
p? + i€

g" + ptp”-terms + O(e?), (17.36)
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arises in e” e~ — e~ e~ scattering,

B

= (— e)*u(ps) v u(p1)u(pa)y" u(p2)iG*" — (p3 <> pa)

where the minus sign comes from exchanging the fermion lines. Note that we can check explicitly that
pHp¥-term does not contribute. We claim that the loop correction can be interpreted as correction to the

classical potential. To see this, take non-relativistic limit m > 1, the polarization tensor is

N A o 1\ (o
u(p)—< p-&{) with J—(l,a),a—(l,—a),a—{<0>,<1)}.

. (17.38)
V1—p-d/p%¢
i*U(p)—\/p()( ﬂﬂ/ )
where p? = \/m?2 + p2. Take the non-relativistic limit,
f N (& f
=0 wipsulpr) ~m (e &) |* | =2mela
_ 1
= a(ps)yulpr) = i g
. —0
p=1i ul(p3)y"yu(pr) = ul(ps) . | u(p1) 0 (leading order) .
O.l
(17.39)
. 1 — eI, (p? 1 — %I, (p?
= iy =— —zpf(p)goo] am2eleieles = —¢? [—@pj(p)goo AM* 65, 040e,¢, »  (17.40)
and p = p3 — p1, as p? ~ m, we have p> = —p?. Let’s compare to non-relativistic Bonn approximation
Spa (B — @) — 2mid(Ea — Eg) (98] V |9a) (17.41)

where Tgo = (93| V |¢a), V is the interacting Hamiltonian H' = H +V and |¢,) is the free state. Applied

to 2 — 2 scattering, in local, spin-independent central potential,

T (¢p1,01 + ¢p2,02 — ¢p3,03 + ¢p4,<74) = A <(I)37 CI)4| V(ﬁ:_ Zj") |(I)17 q)2>A . (17'42)

A denotes the anti-symmetrization. Expanding the integral,

= /d?’fldgfzd?’fsdsﬁ (D3, Pa|T3, Za) (23, T4| V(|71 — 22|) |Z1, T2) (Z1, T2[P1, P2) 0010900004 (17.43)

—(p3,03 <> p4,04),
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the last term means that exchanging the position of the quantity relates to the particle 3 and 4. Notice
that

2
13/2> e~ i(Ps T thuTa) (17.44)

D3, Pa|T3, Ts) = | ——==
(D3, Pa|@3, Za) <(27r)

we have
d3$1d3x2ei(ﬁ1—ﬁ3)'f1+i(ﬁz—ﬁ4)'i"2V (171 = T2)) Goy06ra0, — (3 > 4)

I
™o
N [ =
=
—

o | (17.45)
A L [V i~ (0 )
7r
With V(|7]) = %, V(p) = 47r|%—22, upon matching normalization
7 (2 ¢’ 2 2
V(p)z};(l—eﬂz(p)jt...), (17.46)

QFT calculation indeed reproduces classical Coulomb potential. The experiment will measure V(pQ) at
some reference scale p¥, it is no doubt that V(p%) is finite, but why Il(p3) is infinite? Reconsider the
identification of e in Lagrangian with the measured electric charge of electron. We define the renormalized

charge e at reference scale p°.

2
- e
V(pg) = &

5 (17.47)
Do
which is called the renormalization condition. Combine with the relation (17.46]), we have
ek =paV(pd) = €2 — ' ly(p?) + ... . (17.48)

The left hand side should be finite. Then comes to the renormalization step: replace e-dependence (infinite,
non-measurable) by eg-dependence (finite, measurable). Invert the equation as formal power series,
we have

e =eh + eRIla(pd) + ... (17.49)

and substitute with pg as arbitrary momentum,

PV (p®) = € — e'lla(p®) + ... = ek + exlla(pf) — eRll2(p?) + O(e}) . (17.50)

Let us choose pg — 0 (this corresponds to measuring charge at co), and based on the equation ((17.35)), we

have .

= TI(p?) —»(0) = T2

2(1—z)In <1 - f;x(1 - a:)) : (17.51)

where the € and & dependence cancels. It leads to the momentum dependent correction to potential.

17.5.3 Small momentum approximation and the Lamb shift

For |p?| < m?, we truncate the logarithm in at first order,

2 2

2(1— ) [—fﬂx(l - x)] - 60:27712 : (17.52)

1 1

I(p?) — I(0) = "o ),
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= VeH=E__“kR ., (17.53)

Inverse Fourier transform the expression we get the correction of the potential,

2 4

_°rR _ _®r 17.54
vir) Aqrr 607r2m25(r) T ( )

where the second term (first order correction) is called the Uehiling term. The correction has support at
origin. Hence, it affects the s (I = 0) orbit but not the p (I = 1) orbit. It destroys the degeneracy between
2s and 2p level, as measured by Lamb. This is a contribution called the Lamb shift. The full treatment

requires external field method.

17.5.4 The running coupling, screening, and the Landau pole

Consider Q? = —p? > m (Again, p is not on-shell), this gives

. 2 a9 02
V(Q?) = _% — 2;271_2/0 dzz(l —z)ln [1 + Wﬂ?(l - x)] . (17.55)

The logarithm
In [1 + g;x(l — x)} ~ In [g;a:(l — x)] ~ In fg; +Inz(l—2x)~In TQT; , (17.56)

then the integral reduces to

2 2 2
;::—e—}; <1+ eRzan—Q—f— )

¢ tem 17.57
", (17.57)

—__Ir

Q?’

2

with e?cf = e% (1 + 1;% In %z ) The effective charge is ()-dependent, which is called the running

coupling. There are two limits needs attention

e Q? — m?, which is equivalent to increasing the distance, the effective charge decreases. The inter-

pretation is that the creation of virtual electron-positrons pairs that screen the charge.

e Q% is large. The effective charge diverges because of the term e% In %Z Now we introduce Bettes

estimate. First, each loops will have

+MV\M©W+W+"' (17.58)
Notice that each unit
[ —iptgme (Ty(p?) — T(0))] [ =29
[—ip*gpoch (M2(p?) — M2(0))] ) (17.59)
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with I (p?) — M2(0) = — 5 In Q  we have

T 12n2 T m2
) 1 Q2 Z-gozz 62 Q2
2 2 _ R
|:Zp ng'eRTﬂ_Q In 7’)’12:| <_ p2 = (SZ 1271_2 In W . (1760)
Then the expression ((17.58]) generates
. . . 2
: ig"” g\ ep , @ g\ ( ek , Q@
G = — _ In = _ In =— . 17.61
! < p? > + ( p? ) 1272 2 + p? 12702 2 + ( )
2 2 2 2\ 2
2 2\ _ 2 R Q €R Q
= eff(Q )—CR 1+127r21n7,n2+(127r211'17n2> 4 ...
9 (17.62)
_ R i
— 2 2 cee
1— 13?2 In %

where the . .. represents some diagrams are not included by this geometric summation (e.g. _@)

The result has pole at In % = 12 This breaks down the perturbation theory of ¢3, called the Lan-

.
R

dau pole.

17.6 Renormalizing Green’s function

Rather than studying observables (S-matrix elements) directly, we will study the building blocks, which

are the n-point functions, organized by number n of insertions.

One point function

Because the vacuum is the translational invariant, the one point function is
(Q] A%(2) [2) = (0] 7" A" (2)e 77 |Q) = (] A*() Q) . (17.63)
The VEVs are constant, set by boundary conditions on your theory. As for the Lorentz transformation,
(QUUA)AMOUTH(A) Q) = A%, (2] A7(0) |2) | (17.64)

by Lorentz invariant of the vacuum U(A)|Q) = |Q), the left hand side is always (Q2| A#(0)|Q2), thus
(Q AH(0)1Q2) = A*, (Q] A¥(0) |Q) for all A, the only possibility is that (Q] A#(0) |€2) = 0. Only scalar fields
can have non-vanishing VEVs without breaking Lorentz invariance. This conclusion will play an important
role in the Standard model and the context of spontaneous symmetry breaking, but not in QED.

Two point functions

In QED, there are four types of the two point functions,

o (Q T {A*(x)A¥(y)}|Q) will leads to the vacuum polarization, which we discussed above.
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o (QAM@)Y(y) ) = (Q] T {A")(y) } |Q) = 0 as no possible Feynman diagram.
o (QY(x)Y(y)|Q) will leads to the problem called the electron self energy.
All other combination of two spinors vanish, by same argument as above.

d*p

(2m)*

Remark 17.2. G = G(p?,p). Because p* = pp, so we just write G(p).

@7 (@i} 1) = [ 5 e PG, (17.65)

Consider the Feynman diagram up to order 2, and define iGo(p) = ﬁ,
q
P, P NP
iGp) = —»—+ > (17.66)
pP—4q

= iGo(p) + iGo(p) (T (p)iGo(p) -

where the subscript 2 denote that it is the second order contribution, In Feynman gauge, we have

d*k i(f +m)

iXa(p) = (—i€)2/ (mﬂ“ 22t ic! » _‘,j;’g“; -~ (17.67)

Following the same steps of estimation, the UV divergent part of g is

. ap— 4dm 62
[lZQ(p)]UV divergent — ;p % , o= E . (1768)

Remark 17.3. Unlike 11y, [X2]divergent has two terms with different momentum dependence, which means

that we will require two renormalization conditions.

17.6.1 Mass and field renormalization

Recall I, divergence was absorbed in replacing charge e with renormalized charge eg. We absorb [¥2]qivergent
by replacing
mo — mg, P°— . (17.69)
We set
mo = Zmmpg = (14 0m)mr, Om = O(e%)

VO(2) = V2P (2) = 1+ 6205 (x), 62 =0(e}).

dm, 02 are formal power series in er, beginning at order e%—i. We quantify the variable by using LSZ formula.

(17.70)

@17 {6 @i W)} 19) = 5 @ T (P @)} | (17.71)
at tree level
1 i1 i s ; ot
Zﬁ—mo_1+5gp—mR—5mmR_( N 2)(p_mR)<1—m>+ (eRr) (17.72)
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where we expand the denominator (1+ d2)~! =1 — 83 + O(e}). Using the same trick again, the equation

becomes
i i P—mpr+Oommpg A
‘nymﬁ‘“ évfwm p—mn + O(eg)
-5 _sz i ; _sz [—i(=bap + Samp + Ommp)] r—— +0(ef) (17.73)
= ! ! ) — m . ek
*p—mR+p—mﬂ[®W wyw%)Rﬂp_mR+O(m,

which the right structure to absorb the divergence in Y. Substitute the above result (the modification to
iGo(p)) into the equation (17.66) and collect the result up to the order e%,

1 1

GE(p) = (6o — (02 + 6 » O(ek) -
iG7(p) p_mR+p—mRh<M (2+7wmm+22@ﬂp_mR+ (k) (17.74)
The divergent part is [iX2(p)]uv divergent = %p _;im, where we only keep the lowest order term. Replacing
q
mo by mpg in the graph m modifies the result at order e}l{. We can absorb the divergence
pP—q
e.g. by defining
5 — a 2
2T Tan e’
2
Gy Oy = ——= (17.75)
T €
3a 2
= dp=—-——-
mn 4 €

Here « has e-dependence. Since we only consider up to the order e%, we can replace e in the lowest order
2
°r

o = ar "

17.6.2 Subtraction scheme MS, MS , on-shell subtraction

Modifying 99, 6,, by any finite contribution still absorbs the infinities, which give rise to equally admissible

renormalization scheme.
o Minimal Subtraction (MS): define ¢ with no finite part as equation (17.75)).
« Modified Minimal Subtraction (MS), define § that subtracts the part 2 + In4r — yp.
e On-shell subtraction.

We introduce the on-shell subtraction scheme in detail. We want to identify mp with the physical mass,

defined as the location of the pole of the dressed propagator. As for vacuum polarization, consider

q q q
P P SN D P S ND SN D
= >+ L , (17.76)
pP—q pP—q p—k
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which is the geometric sum, but does not encompass, e.g. \';;\\ . To remedy this, we

define 1-particle irreducible (1 PI) diagrams:

Definition 17.2. I-particle irreducible diagrams (1PI): diagrams can not be divided into two non-trivial

diagrams by cutting a single line.

N

Example 17.6. For example, the diagram b is 1PL

DTN D SN D

The diagram M 1s not 1PI.

Then we define

-~

Sp = ) —(/1PI:»—3=

1PI diagram

-~ -

(17.77)
- S 3 n ...

where the external legs are amputated. Then

iG(p) = (Dt
- Lp ! S L B
p—m+p—m p—m+p—m p—m p—m+ (17.78)
i o= i \" i 1 B i
_p—m;)(mp—m) S pmml-isg pom+X(p)

The quantum corrections shift position of pole of complete electron propagator away from free-value, which
leads to the modification of LSZ as we required. The complete propagator for renormalized fields is then
1 i i

- YR _ _
iG (p)_1+5zp—mo+2(p>_p—mR+ER(p)’ (17.79)

with X R(p) defined by the above equation. Expand to the order e%, we have

Sr(p) = Sa(p) + 62p — (Om + 62)mr + O(eR) - (17.80)

The position of the pole of the complete propagator is a good definition of physical mass (pole mass). The

renormalized propagator should have a single pole at p = mp with residue 1.

Remark 17.4. This pole mass is physical and independent of any subtraction scheme.
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From Eq. (17.79), for GR(p) to have a pole at p = mp, it must satisfy

mp—mR—i—ER(mp) =0. (17.81)

This is the condition defines the pole mass, which is independent of the choice of the subtraction scheme.

The Renormalization conditions in on-shell renormalization scheme are

e mp —mp =0, i.e. choose renormalized mass equal to physical mass.
o fix residue at mp to be i (convenient for LSZ).

The first step gives

ZR(WLP) = EQ(mP) + domp — ((5m + (52)mp’mR:mP + ...
\ (17.82)
= Eg(mp) — (5mmp =0.
The second step gives ‘
i
S B
! p—ggp(ﬁ mp)p — mpg + ZR(Zﬁ) ’ (17.83)
expanding ¥g(p) around mp,
ZR(p):ER(mp)+(p—mp) dsz(p)’ +...
p=mp
17.
d (17.84)
:mR—mp—i—(;z)—mp) d—ZR(p) +
p p:mp
Then the residue becomes
) d |
lim =7 = ZR@))' =0.
m 17.
p—mp 1+ d%gER(p)‘ Cl}ﬁ p=mp ( 785)
p=mp
We will show that )
Q@ 2 3. i
=—|(——=-In-+% -2
om 27 < e 2 m% )
o (1 1 p 9 (17.86)
So=——(-+zIn—5 +2+In— |,
27 (e 2 m% %)

where m., is the IR regulator. To justify manipulation, we set

Sr(p) =op+ 0
N i B i _i[(a+1)p+mp— ] (17.87)
p—mr+Ir(p) (a+Dp—mp+8 (a+1)%p?—(mp—p)?’
where the pole is ,
PP = m —m. (17.88)



Also, from the equation (|17.81]), we have

amp + 8 =3Xg(mr) =mp—mp = mp= mR_i__lﬁ : (17.89)
(6]

17.6.3 LSZ and the shift of the pole of the complete electron propagator
LSZ formula tells us that the residue of the appropriate Green’s function at pZ, = m?, where m is the
physical mass, entered via dispersion relation p?> = m?. We need to replace mg by mp in our considerations

and multiply the time-ordered product by lim,, —m2, (—p? + m%) to amputates the outermost propagator,

i.e. all diagrams

+ + ... (17.90)

just serve to shift the poles from mg to mp in perturbation theory. LSZ prescription: To obtain S-
matrix from appropriate n-point function, we need to amputate complete external propagator, replaced by

polarization tensor.

17.7 Renormalized perturbation theory

We have been computing in two steps,
e Compute the bare Green’s function.

¢ Rescale to obtain Green’s function of renormalized fields. Re-express in terms of renomralized cou-

plings and masses.

Combine these two steps by expressing Lagrangian directly in terms of renormalized quantities,
1 -0 (. 0
&L = = (F)u (FOP 4+ 5° (i) — e’ = mo) ", (17.91)
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where the subscript or superscript 0 means the bare quantity. We define

W0 =/ Zyy"
AY) = \/Z3 A%

Mo = Zmimn (17.92)
€0 = Zeer ‘

Z1 = ZorN/Z3Z,
Zi=1+6;, 6;=0(%) for i=1,23.

The Lagrangian with renormalized quantity is
1 R (-
L = —123(FR)W(FR)W + ZypR (%79 — Zen/ Zsep A" — mmR) Pt
=146 1 v, TR (: 1 vy e T
AN L) (PR 98 (i) — enA™ —mi ) @ — 200(F ) (FRY™ + sy Py (1795)
—~(Om + G2 + 082) ™" — Sreribn — Srerd AR

We can absorb §,,02 in the redefinition of d,, to ¢/, such that 8/, + d2 = 0, + d2 + dnd2. In the following

discussion ¢,,, means this new definition.

17.7.1 Feynman rules

Based on the new Lagrangian, we can read the Feynman rules. The same as previous Lagrangian, but

with 3 new vertices.

e The first new term is the )%,

= Z(pég — (5m + (52)7713) , (17.94)
where we substitute @ with —ip when momentum is aligned with particle flow direction.

o The “free” term of the photon, comes from 53(F£,)(FR)W,
B = —i03 (PP g — PHpY) (17.95)

e The field-photon interaction comes from the term 1/_JRAR1/}R,

= —idrep?”, (17.96)

where d1eg ~ e?j%.

Remark 17.5. Perturbation theory is now organized in terms of finite coupling constant er, more appealing

(though equivalent) to having ey appear in intermediate step.

The 0; (and the diagrams they generate) are called the counterterms, which is
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« infinite at each order in €%,. (e.g. function of 1 in dimension regularization).

o coeflicient of e%{‘ chosen to cancel infinities at given loop order.

17.7.2 Electron self-energy in renormalized perturbation theory

Recall

4 .
T (@b} 19 =i [ e e G). (17.97)

where 9, 1) is the renormalized field and G (p) is formally called GP. Based on the discussion,

iGp) = _» T S S 1y

= T +p—mRi22(p)p—mR +p_mRi [p02 — (82 + 6 )mg] i—

(17.98)
+0(eR) ,

where ¥(p) include ep and we use er to replace it. We reproduce the previous result for Xg.

17.7.3 Photon self-energy (vacuum polarization) in renormalized perturbation theory

The two point function

(Q 7 {AH(2)A"(y)} Q) = / (%)461”(“”)1'6?””(19)' (17.99)

iGM (p) = +Wm©m+wvw®vm+ O(eR) - (17.100)

Gl = i 7 (17.101)

With

we have
iGN = Gl + G [~1(0°Gpo — Dppo)eRTTa(0%)] iG e + iGHee [<103(0° 9o — Dppo)] iGTree + O(eR)

. . . PoPo ] - ow
=G, + G, | —i(p*gpe — ;20) iGZEp” (eRII2(p?) + 03) + O(eR) -

(17.102)

The II5(p?) contributes to the infinite part 1217r2 % The divergence can be absorbed by Js.

Remark 17.6. The product of tensors can be simplified if we use Lorenz gauge € = 0. The key point here

is that the nominator of such Gh... is a projector,
pip” v Ppp” y P
ghr — ) (g — =g — . 17.103
< p? S p? ( )
Thus, in Lorenz gauge,
a0 . uv pMpV 1 N2 (2 2 4
iGH =i (g™ — ) [1+ (—)” (exIl2(p?) + 03) + O(eR)] - (17.104)
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To define the on-shell renormalization scheme, we need to repeat the process as in the electron self-energy

iS(P) = (T = >

1PI diagrams

:WQM+W®WW+... (17.105)

= —i(p’g" — p"p")(p"),
where II(p?) = e%I12(p?) + 3 +. .. is the form factor. And the prefactor (p%g"” —p#p”) directly comes from
the Ward identity since pu(p2g“” — p*p¥) = 0. Note that II(p?) does not exhibit a pole at p?> = 0, such

poles arise from propagators, carrying the momentum p, e.g. W has a internal

photon propagator, gives 1%, but no such a propagator appears in 1PI. This gives

part. The 1PI diagram is

1IGM = oo+ s + @ s + ...

g — 2F g -8 =
= () P M) + () P G (17.106)
g — 28 1
D

=—1

p? 1+ O(p?)°

Because of the Ward identity, the position of the pole of the complete propagator is not shifted compared
to the free propagator. It lies at p? = 0, photon remains massless to all orders in perturbation theory. The
renormalization condition to be imposed in a on-shell renormalization scheme is to fix residue of complete

propagator to be equal to that of free propagator
I(p?)[,2—0 = 0. (17.107)

Recall that

H(Z)—l/ldx(l—x) Zim I (17.108)
2= o 0 € m% —p*x(l—z)] '

where we substitute mg with mpg since we only consider to the order e%. And

(p®) = exlla(p®) + 03 + ... (17.109)
2 2 1 2 ﬂ2

= 03 = —erlly(0) = “Rig2 \ ¢ + lnmig ) (17.110)
R

which is the result got via the on-shell scheme. Then

2

1
2y _ °R
II(p )_27r2/0 dx:c(l—x)lnm%%_p%(l_x),

2
Mg

(17.111)

o TI(p?) is finite (to this order).

e In on-shell scheme, mp = mp, the result is ji independent.
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Renormalizing two point functions has fixed s, d,,, 03, the only counterterm is d; from 2y = Zy\/Z37Z,.

17.7.4 Vertex operation

A prior non-vanishing 3 point functions,

(Q 7 {¢(@1)(x2) A (23) } 1) (17.112)

(Q T {AF(21)AY (z2) AP (23)} ) . (17.113)

Remark 17.7. Related to the equation (17.113), by Furry theorem, diagrams with only external photon
lines vanish if the number of these lines is odd.

Proof: QED is invariant under C, which is the charge conjugation. By

CAM(z)CTt = —AM(z), (17.114)
QT LA (1) ... A (2,)}19) = (] €T AP (a1) ... AP ()€ |0) (17.115)
= (1) (Q| T {A" (z1) ... AP ()} |2) . '
We can check that using Feynman diagram:
+ =0. (17.116)
To address equation (17.112)), we define I';, via

g
u(g2) [—ierl™ (p)] u(q1) = SR (17.117)

i

where the blob part means the 1PI diagrams. ¢, g2 are on-shell and the external photon amputated.
Placing ¢; on-shell and sandwiching between u(g2) and u(q;) allows, after some algebra and by involving

Ward identity, (and of course, Lorentz invariance), to parametrize the I'* as

2 7 2
I = Fy (p >7u+ Y Py (512) , (17.118)

m?2 2m
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where o = L[o#, 0¥], Fy and F, are form factors.

o /& + A\ + /&UBRMM) o o

01 occurs in appropriate expression to absorb the divergence of Fy. F5 is finite at this order. The on-shell
renormalization scheme requires I'#(0) = v#. This implies that er coincides with measured electric charge

via 2 to 2 scattering. The full diagram,

'2) u(k2)y"u(ky) , (17.120)

where the blob vertex means the 1PI diagram, the red propagator emphasises that it is the complete
propagator and p? — 0 corresponds to the large distance limit. Performing the calculation (based on the

I'*(0) = 4*), we find 0; = d2. This equation holds in any gauge invariant normalization scheme.

Summary of on-shell renormalization conditions

o Impose mp = m leads to X(mp) = 0.
o Impose residue of complete fermion propagator equal i leads to ¥/(mp) = 0.
o Impose equality of residue of complete propagator and free propagator leads to I1(0) = 0.

o Impose eg = ep be measured by 2-2 scattering leads to I'#(0) = v*.

17.7.5 7, =7, : a consequence of gauge invariance
Recall the Lagrangian

1 - _ B
= _ZZSF;UJFWJ + ZZ2'¢$¢ - eRZﬂ/}A¢ — ZoZyympyYy
. ] 2 ) (17.121)
= _ZZ?)FHVF/“/ + Zop (i) — ¢ry Y — ZoZymmpt),

Z

where all the quantities are renormalized quantities. For gauge symmetry

w N efia(z)w

1 (17.122)
AP — AP+ —0OFar,
€R
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to survive in the quantum correction, we must have Z; = Zs.
Remark 17.8. The dependence on er can be absorbed into the gauge field A*,

1 1
——F F*" — ——F, F""
4 4€2R

erp Ay — PAY (17.123)

1
<A“ 5 AF 4 aw) > (A — AP 4 9q)
eRr

Remark 17.9. From Z, = Z3, we immediately have \/Z3Z, = 1, \/Z3 = Z% This is why we could

renormalize photon self energy via field 63 or via charge 6. renormalization. These two ways are equivalent.

In particular, charge renormalization depends only on the photon, and charge ratios that are preserved
by quantum corrections. However, gauge invariance is obscured by choice of renormalization scheme. A

more formal proof is to prove via Ward-Takahashi identity.

17.8 Renormalization scheme, scalar, and renormalization group equa-

tions

What happen to choosing a scale at which we match to experiment?

« In on-shell scheme, mp and p* — 0 are the scales underlying this scheme. The n-point function is

independent of pu.

e in MS, MS scheme, n point function in terms of mpg, eg retain p-dependence. (or fi), but

~2
mp = mp + Sg(mg) = mp [1 L <4 +3In “2> + O(aQ)} . (17.124)
47 mp
Observables & must be u-independent,
d
—0 =0. 17.125
i ( )

This leads to the renormalization group equations (RGE). Bare quantities must be u-independent.

So the RGE fro charge follows from
! d d €
0=p co=p-- (M?eRZe)
a a (17.126)
o ulen=plen)
3
where f(er) is called the S-function, computed in perturbation theory, in this case 5(eg) = 1;% to

the leading order.

17.9 Infrared divergence

When computing Zi, Z, in the on-shell scheme, the integral of the Feynman parameter [ ...dx is divergent.

It can be traced to k%> ~ 0 region, which is called the IR divergence. We regulate this divergence by
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introducing a photon mass m., in violation of gauge invariance. The source of these divergence is that we

cannot distinguish between

+ +

e'e —e e

(17.127)
e et — e*eJ“y,

for arbitrary soft (low energy) or collinear (in direction of electron) at any finite detector resolution. The
similar thing to UV divergence is that it arises in unobservable quantity, e.g. S-matrix with only e”e™ in

outgoing channel. The difference is that the divergence cancels in cross-section computed for process with

different external legs,

The IR divergence is in phase space integral.

Theorem 17.1. Kinoshita-Lee-Nauenberg theorem: The infrared divergence cancel in unitary theories

when soft quanta both in the incoming and outgoing channel are taken to account,
Remark 17.10. In QED, it is sufficient to include only soft quanta in outgoing channel. (Bloch—Nordsieck
cancellation. )

17.10 Renormalizability

17.10.1 Superficial degree of divergence

In a 1PI diagram, all internal lines carry momentum that is integrated over. We can estimate superficial

degree of divergence D of a diagram defined via
o0
diagram ~ / kP~ tdk (17.129)
e D > 0: power-law divergence,
e D = 0: logarithm divergence,
e D < 0: convergence,

by counting number of interactions vs. number of internal propagators.

Data of diagram required
e I'y, the number of internal lines of filed type f.
Example 17.7. For QED, f is photon or electron.
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Mass dimension of propagator [(0| 7 {(b}(x)(bf(x)} |0)].
2(¢s] = 2dy = [(0] 7 {¢}(2)y(2) } 10)] = [/ d'p] + [As(p)] = 4+ [As(p)]
= [Af(p)] :2df—4, Af(p) Nk2df_4.
Example 17.8. Ay ~ k2174 =72 Ay = k2x5—4 L,

N;, the number of vertices of type 4, with n;; fields of type f.

Example 17.9. For QED, there is only one type of vertex, with ng = 1,ny = 2.

Ey, the number of external lines of type f.

Using these data, we can see that

D = 4 x [number of integration] + fo(—él +2dy) .
f

Notice that

[number of integration] = Z I'y— (Z N; —1),
f i

(17.130)

(17.131)

(17.132)

where IN; comes from the momentum conservation J-function at each vertex and the —1 comes from the

overall momentum § function. We can remove I'y dependence in D by involving

2Ff =+ Ef = ZNinif .
[

Example 17.10.

Ny=1 ngp=4
Ny:2 nyf:3

Remark 17.11. In QED, 2I'y + Ey = 2N, Ey, must be even.

This gives

D:4_deEf_ZNi (4—Znifdf> .
f i i

(17.133)

(17.134)

(17.135)

We define A; = N;(4— >, nirdy), is the mass dimension of coupling of interaction giving via to the vertex

For A; = 0, only a finite number of n point functions. (i.e. a finite of configuration {Ey}).

[/d‘lxgiH(bef} =0.

Definition 17.3. An interaction is
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o super renormalizable: A; > 0.
e renormalizable: A; = 0.

e non-renormalizable: A\; <0

17.10.2 Cancelling divergence

What momentum dependence can a divergence due to a loop integral have? TO answer this question,
we first claim that the coefficient of divergence is polynomial in external momenta. We argue that the

divergent integral will have external momentum p dependence in denominator, e.g.

I(p) = /OOO kdfp. (17.137)

Differentiating with regard to p lowers the degree of divergence, finally we arrive at a finite integral, e.g.

d °dk 1
%I(p) — _/O i (17.138)

Integrating with regard to p yields the original integral, with divergent coefficient multiplying monomials

in p, e.g
I(p)=—lnp+e, (17.139)

where c¢ is the integral constant (divergent). More generally

' RPdk S n D 17.140
; m—zanp +cp - Inp, (17.140)

n=0

where the coefficient a,, diverges and c is finite. Monomial p-dependence cab be generated via derivative
interactions. To cancel divergence ox p” from Green’s function with F ¢ external legs of type f, we introduce
an operator with Ey fields of f and k derivative of Lagrangian for £ = 0,...,D. Dimension of coupling
constant of this operator 4 — ) F¢ds — k. Now assume that the interaction generating the divergence was

(super) normalizable, which means that

D<4-Y"Eidy = 4= Epdy—k>0, (17.141)
f f

the operators required to absorb all divergence are (super) renormalizable. By introducing all such opera-

tors in the Lagrangian, all divergence are cancelled. Why these arguments are not complete?

e There exists sub divergence: superficially convergent diagram may has sub-diagrams that are diver-

gent, e.g.

3
~A—dx D=2, (17.142)
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but the diagram is divergent (has a loop), it will cancels with

(17.143)

o Overlapping divergence.

Theorem 17.2. The BPHZ theorem: A normalizable theory (i.e. a theory containing only renormalizable
or super renormalizable interactions), introducing counter terms for all (super) renormalizable interactions

1s sufficient to absorb all divergence.

Example 17.11. In QED, A, = 0, which is a renormalizable theory.

For (Q| 7 {¢(z)¢(y) } |Q), the mass dimension is 4 — 2 x 3 =1, we introduce 6,,(k = 0),52(k = 1).

For (Q 7 {A*(x)A"(y)} |92), 4 — 2 x 1 = 2, we introduce 63(k = 2).

For (Q| 7 {¢(x)(y)A*(2)} |Q), 4 — 2 x 3 — 1 =0, we introduce 6, (k = 0).

For (Q| 7 {AF(x)AY (y)AP(2) A% (w)} |Q2), 4 — 4 x 1 =0, which is finite.
Remark 17.12. There exists non-renormalizable theory, for example, the gravity.
& =M}\/gR (17.144)

with the coupling constant 1/M,;, My is the Planck mass. It is non-renormalizable, which requires an
infinite number of counter terms with higher and higher order of derivatives to absorb all divergence. These
higher order terms suppressed by (E/My)" and there is non-analytical momentum dependence generated

by loops.
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