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1 Introduction

1.1 Brief review of gravitational model

General relativity is the foundation of modern theoretical physics. The key equation, which is the well-

known Einstein field equation, is the starting point of some classical gravity research. The Einstein field

equation is

Gµν := Rµν −
1

2
Rgµν = κTµν − Λgµν , (1.1)

where gµν is the spacetime metric, the elementary quantity to describe the gravity. Rµν and R is the Ricci

tensor and Ricci scalar computed by gµν . κ is the coupling constant, usually in the unit of c = 1, we set it

as 8πG (in order to match with the Newtonian gravity). Tµν is the energy momentum tensor and Λ is the

cosmological constant. Throughout this paper, we only consider the universe with Λ = 0.

In order to prepare the discussion later and for completeness, we briefly review the basic mathematics

in general relativity. The gravity emerges from curved spacetime. In Riemannian manifold equipped

with metric gµν , we can define the covariant derivative ∇ with respect to a specific connection Γα
βγ . The

difference between connection coefficient can be eliminated by coordinate transformation so we just choose

the convenient convention, which is the Levi-Civita symbol, leading ∇αgβγ = 0. The corresponding

Christoffel symbol is

Γα
βγ =

1

2
gασ (∂βgσγ + ∂γgβσ − ∂σgβγ) . (1.2)

The curvature is described by the non-commutativity of parallel transports, which is the definition of

Riemann tensor Ri
lkm : (∇k∇m − ∇m∇k)Al = Ri

lkmAi, where Ai is an arbitrary 1-form. Then the

Riemann tensor is

Ri
lkm = ∂kΓ

i
lm − ∂mΓi

kl + Γi
knΓ

n
lm − Γi

mnΓ
n
kl . (1.3)

We could then define the corresponding Ricci tensor and Ricci scalar, which is Rµρ = Rσ
µσρ, R = gµρRµρ.

The Einstein field equation comes from the combination of least action principle and Einstein-Hilbert SEH

SEH =

∫
dD+1x

√
−g(R− 2Λ), Λ ≡ 0 . (1.4)

The variation with respect to gµν will reproduce the Einstein field equation (1.1). Though it looks simple,

the underlying partial differential equations are highly non-linear and complicated.
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1.2 Questions and the structure of the paper

Nowadays the mainstream physics thinks that our real universe is 4 dimensional. However, the formulation

above doesn’t impose any restriction of the spacetime dimension. In other words, there might be “gravity”

in spacetime of lower or higher dimension. A natural question raises here: What happen if we consider

the gravity in 2+1 D spacetime (two spatial dimension and one time dimension, sometimes called three

dimensional gravity)? As we can expect, the degrees of freedom in 2+1 D gravity will be much less than

that in 4 dimension, which means that it might be exactly solvable. What about the higher dimensional

gravity? Is it possible to get analytical solution in higher dimensional gravitational model? The research

on these topics has long history and it is impossible to introduce all of them in this paper. We will focus

our attention on several simple questions. Those discussion can help us have some intuition toward the

gravitational model. These questions are

• What does the 2+1 D dimensional gravity look like? Is there any nontrivial dynamical effect in this

dimension?

• Suppose we consider the massive point source model in D + 1 (D ≥ 2) dimensional gravity, can we

provide the general solution of this model?

Before we discuss these questions before, we should remind that the degrees of freedom of the metric in

Einstein gravity theory is not the general (D + 1)(D + 2)/2 (the degrees of freedom of the real symmetric

metric). We have the following theorem below

Theorem 1.1. The real degrees of freedom in Einstein gravity theory is

d.o.f =
D(D − 1)

2
− 1 . (1.5)

The proof of this theorem is in the appendix A. For 2+1 dimensional gravity, D = 2, there is no

dynamical degrees of freedom in the theory (no gravitational wave!). It means that for any gravitational

field, the metric can be always deformed to the Minkowski metric. The gravitational behaviour in 2+1 D

is so special, in the following discussion, we will explore

• Why the 2+1 D gravity is so special? What’s the deep (geometric) reason behind this speciality?

In order to answer these questions, we first introduce ADM formulation of general relativity in D + 1

dimensional gravity. This is the content of section (2). After constructing ADM formalism in arbitrary

dimension, we will couple it with the matter field to rewrite the Einstein field equation in the presence of

matter source and matter current. In particular, we assume the matter field is the point source at rest

in order to make further progress. These final system of equation is written down in section (3). Then

the task is to solve this equation to get the general form of the metric, this is finished in section (4). We

prove that the solution is exactly the Schwarzschild solution in D + 1 dimension. In the section (5), we

will discuss the three dimensional gravity, explaining why it is so special. In the last section, we will have

a brief summary and discussion about the future work.
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2 ADM formalism

2.1 Brief review of classical mechanics

In classical mechanics, the important quantity is the Lagrangian L, which is the function of generic coordi-

nate qi and its time derivative L = L(qi, q̇i). The action is S =
∫
Ldt. Based on the least action principle,

from δS = 0, we can get the Euler-Lagrangian equation that dominates the dynamic of the system.

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= 0 . (2.1)

As the usual textbooks suggest, the generic coordinate is the metric gµν , the variation of the action (1.4)

with respect to the metric will generate the Einstein field equation (1.1). On the other hand, the equiv-

alent mechanism is the Hamiltonian formalism. Define the conjugate momentum pi as pi =
∂L
∂q̇i

, and the

Hamiltonian of the system is H(pi, qi) =
∑

i piq̇i − L. The system of the equations that dominates the

dynamic of the system is the well know canonical equation

q̇i =
∂H

∂pi
, ṗi = −∂H

∂qi
. (2.2)

This the basic idea of the ADM formalism, named for its authors Richard Arnowitt, Stanley Deser and

Charles W. Misner. We would like to write the dynamical equation of gµν is this form. The advantage of

this formalism is that it can split the time and spatial component, which is easy to deal with and sufficiently

use the symmetry to simplify the equations. Also, the Hamiltonian formalism can help us find the way to

quantize the gravity, which is the most important problem in modern theoretical physics.

2.2 ADM formalism

In usual context the ADM formalism is discussed in 4 dimensional spacetime[1]. However, in arbitrary

D + 1 dimension, there is a little bit difference. We need to extend the formalism to arbitrary dimension.

Mostly we just show the key steps and calculation results in the main text. Most of the details are put

in the appendix B. Here we use D to denote the spatial dimension and the whole spacetime dimension is

D + 1. It is convenient to decompose the metric as

g00 = −α2 + γijβiβj , g0i = gi0 = βi, gij = γij , (2.3)

where the Latin indices run from 1 to D. γij is the inverse of γij , i.e. γ
ikγkj = δij . This D+1 decomposition

of the metric replaces the metric components by the lapse function α(x), the shift vector βi(x), and the

symmetric spatial metric γij(x), where we use x to denote the point in the spacetime manifold. The inverse

spacetime metric components are

g00 = − 1

α2
, g0i =

βi

α2
, gij = γij − βiβj

α2
, (2.4)

where βi ≡ γijβj . All Latin indices are raised and lowered using the spatial metric. The determinant

of the whole spacetime metric is g = det(gµν) = −α2γ (The lemma B.1 in the appendix B). The D + 1

decomposition separates the treatment of time and space coordinates. In the following discussion, we use
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∇i to denote the D dimensional covariant derivative with respect to γ, i.e

∇kγij = 0 . (2.5)

And we use γijk to denote its Christoffel symbol, which is

γijk ≡ 1

2
γil (∂jγkl + ∂kγjl − ∂lγjk) . (2.6)

In this D + 1 approach, spacetime is described by a set of D-dimensional hypersurfaces of constant time

t = x0 propagating forward in time. The intrinsic curvature, described by the Riemann tensor, is

(∇k∇m −∇m∇k)Vl = R
(D) i

lkmVi , (2.7)

or the component description,

R
(D) i

lkm = ∂kγ
i
lm − ∂mγikl + γiknγ

n
lm − γimnγ

n
kl . (2.8)

The D spatial dimensional Ricci tensor is R
(D)

ij = R
(D) k

ikj and the Ricci scalar R(D) = γij R
(D)

ij . The

left subscript (D) emphasises that it is the geometric quantity of the D dimensional hypersurface. In

addition to the intrinsic curvature, the hyperspace of constant time also has an extrinsic curvature (or

second fundamental form) Kij is

Kij =
1

2α
(∇iβj +∇jβi − ∂tγij) . (2.9)

The relation between the intrinsic and extrinsic curvature of the constant-time hypersurfaces and the D+1

dimensional Riemannian tensor based on Gauss-Codazzi equations

R
(D+1) 0

jkl = − 1

α
(∇kKjl −∇lKjk) , (2.10)

and

R
(D+1) i

jkl = R
(D) i

jkl − R
(D+1) 0

jklβ
i +Ki

kKjl −Ki
lKjk . (2.11)

The other component of the D + 1 dimension Riemann tensor is

R
(D+1) 0

i0j = − 1

α
∂tKij −K k

i Kjk −
1

α
∇i∇jα+

1

α

[
∇j

(
βkKik

)
+Kjk∇iβ

k
]
, (2.12)

and

R
(D+1) k

i0j = R
(D+1) k

iljβ
l +
[

R
(D+1) 0

iljβ
l − R

(D+1) 0
i0j

]
βk + α

[
∇kKij −∇iK

k
j

]
. (2.13)
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The Einstein tensor defined by Gµν = R
(D+1)

µν − 1
2 R(D+1) gµν is

G00 = − H

2α2√γ
, H =

√
γ
[
KijK

ij −K2 − R(D)
]
, (2.14)

G0i =
αH i + βiH

2α2√γ
,H i = 2

√
γ∇j

(
Kij −Kγij

)
, (2.15)

Gij = −βiβjH

2α2√γ
+

1

α
√
γ
∂t
(√

γP ij
)
+ R(D) ij − 1

2
R(D) γij (2.16)

− 1

α

(
∇i∇j − γij∇2

)
α+

1

α
∇k

(
βiP jk + βjP ik − βkP ij

)
(2.17)

+ 2P i
k P

jk − PP ij − 1

2

(
P klPkl −

1

2
P 2

)
γij , (2.18)

where K := γijK
ij ,

P ij := Kγij −Kij , P := γijP
ij . (2.19)

The components of the D+ 1 dimensional Riemann and Einstein tensors are raised and lowered using the

D+1-dimensional metric. Components of all other quantities like Kij , Pij , R
(D) i

jkl are raised and lowered

using γij . The D + 1 dimensional Ricci scalar is

√
−g R(D+1) = α

√
γ
[
KijK

ij −K2 + R(D)
]
− 2∂t(

√
γK) + 2∂i

[√
γ(Kβi −∇iα)

]
. (2.20)

The last two terms are total derivative, if we treat it as the Lagrangian, it will be the surface term, which

doesn’t contribute to the equations of motion. So the Lagrangian density LADM is

LADM = α
√
γ
[
KijK

ij −K2 + R(D)
]
, SADM[α, βi, γij ] =

∫
dD+1xLADM . (2.21)

Here we have already used the units that 16πG = 11.

Remark 2.1. One useful observation is that in the ADM Lagrangian there are no dependence on α̇ and

β̇i, which means that these variables are not dynamical variables. The only non-trivial dynamical variable

is γij. The canonical momentum conjugated to γij is πij, which is defined as

πij =
∂LADM

∂γ̇ij
. (2.22)

Noticing that the time derivative of the γij only appears in the Kij (Eq. 2.9),

Kij =
1

2α
(∇iβj +∇jβi − ∂tγij) ⇒ ∂Kab

∂γ̇ij
= − 1

2α
δaiδbj (2.23)

the conjugated momentum πij is

πij =
∂LADM

∂γ̇ij
=

√
γ

(
2Kab∂Kab

∂γ̇ij
− 2γabγcdKcd

∂Kab

∂γ̇ij

)
= −√

γ
(
Kabδaiδbj −Kγabδaiδbj

)
=

√
γ
[
Kγij −Kij

]
=

√
γP ij .

(2.24)

1In D + 1 dimensional gravity, the coupling constant is slightly different, for simplicity we let all of them to be 1.
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The Hamiltonian density obtained through the Legendre transformation of LADM is (detail is in B.1),

HADM = πij γ̇ij − LADM

=
√
γ
[
−α

(
R(D) +K2 −KijK

ij
)
+ 2βi(∇iK −∇jK

j
i )
]
+ 2

√
γ∇j

(
Kβj −Kj

iβ
i
)
,

(2.25)

The corresponding Hamiltonian is

HADM =

∫
Σt

HADMdDx , (2.26)

where the Σt represents the hypersurface of the constant time t. The last term of the equation (2.25) is

the divergence term, which doesn’t contribute to the integral, so the Hamiltonian density can be written

as

HADM = −
∫
Σt

(
αC0 − 2βiCi

)√
γdDx , (2.27)

where

C0 := R(D) +K2 −KijK
ij , (2.28)

Ci := ∇jK
j
i −∇iK . (2.29)

The canonical equation is

πα =
∂LADM

∂α̇
≡ 0, π̇α ≡ 0 = −δHADM

δα
= C0, (2.30)

πi
β =

∂LADM

∂β̇i
≡ 0, π̇i

β = −δHADM

δβi
= −2Ci ≡ 0, (2.31)

γ̇ij =
δHADM

δπij
, π̇ij = −δHADM

δγij
. (2.32)

The above system of equations describes the dynamics of the gravitational system with no matter field.

One might be confused that if C0 = Ci = 0, HADM = 0. It is true if the Hamiltonian is on-shell. The

physical interpretation is that the total energy of the system is zero since there is no source or current.

However, this doesn’t mean that the dynamics is trivial. The dynamical part is included in the last

equation. We want the explicit form of these two equations. Recall that the relation between πij and Kij

and the important relation γabγab = D:

πij =
√
γ
[
Kγij −Kij

]
⇒ π := γijπ

ij =
√
γ(D − 1)K ⇒ K =

π
√
γ(D − 1)

,

⇒ Kij =
1
√
γ

(
π

D − 1
γij − πij

)
⇒ Kab =

1
√
γ

(
π

D − 1
γab − γaiπ

ijγjb

)
.

⇒ δKab

δπij
=

1
√
γ

(
γab

D − 1

δπ

δπij
− γaiγjb

)
=

1
√
γ

(
γabγij
D − 1

− γaiγjb

) (2.33)

In order to compute δH
δπij , we need to compute δC0

δπij and δCk

δπij separately. It is easy to see that δCk

δπij ≡ 0

because δKab

δπij ∼ γij and ∇mγij ≡ 0. The rest part is (detail is in B.2)

δC0

δπij
=

δ R(D)

δπij
+ 2K

δK

δπij
− 2Kab δKab

δπij
=

1
√
γ

(
2Kij −

2Kγij
D − 1

)
(2.34)
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Then

γ̇ij =
δH

δπij
= −2α

(
Kij −

Kγij
D − 1

)
. (2.35)

Expanding the following equation, we have

γ̇ij = −(∇iβj +∇jβi) + γ̇ij +
2αKγij
D − 1

⇒ (∇iβj +∇jβi) =
2αKγij
D − 1

, (2.36)

⇒ δH

δπij
= −2αKij +∇iβj +∇jβi . (2.37)

If we write the equation using the canonical variable, then

γ̇ij = ∇iβj +∇jβi −
2α
√
γ

(
π

D − 1
γij − πij

)
. (2.38)

Now comes to the most complicated equation π̇ij =
δH
δγij . In order to compute it, we first rewrite the Hamil-

tonian with the canonical variables by expanding all the Kab dependence. The terms in the Hamiltonian

noe become

KabKab =
1

γ

(
π

D − 1
γab − πab

)(
π

D − 1
γab − πab

)
=

1

γ

(
2−D

(D − 1)2
π2 + πabπab

)
,

K2 =
π2

γ(D − 1)2
⇒ K2 −KabKab =

1

γ

[
1

(D − 1)
π2 − πabπab

]
,

Ci = ∇jK
j
i −∇iK = ∇j

(
π

√
γ(D − 1)

δji −
πj

i√
γ

)
−∇i

(
π

√
γ(D − 1)

)
= −∇j

(
πj

i√
γ

)
.

(2.39)

the Hamiltonian is

HADM =

∫
Σt

[
−α

√
γ
(

R(D) +K2 −KijK
ij
)
− 2

√
γβi∇j

(
πj

i√
γ

)]
dDx

= −
∫
Σt

α
√
γ R(D) dDx−

∫
Σt

α
1
√
γ

[
1

(D − 1)
π2 − πabπab

]
dDx−

∫
Σt

2
√
γβi∇j

(
πj

i√
γ

)
dDx

(2.40)

We want to compute the variation with respect to γij , some building blocks are needed,

δγ = γγijδγij , δ
√
γ =

1

2
√
γ
δγ =

1

2

√
γγijδγij , γijδγ

ij = −γijδγij ,

δγij = −γiaδγabγ
bj , δ

(
1
√
γ

)
= −1

2
γ−3/2δγ = − 1

2
√
γ
γijδγij ,

(2.41)

2.2.1 The variation of the first term

The variation of the first term in the Hamiltonian is standard, which just reproduces the Einstein field

equation within the D dimensional hypersurface.

δ
(√

γ R(D)
)
= δ

(√
γγij R

(D)
ij

)
= (δ

√
γ) R(D) +

√
γδγij R

(D)
ij +

√
γγijδ R

(D)
ij ,

=
√
γ

(
− R(D) ij +

1

2
R(D) γij

)
δγij +

√
γγijδ R

(D)
ij .

(2.42)

8



The last term needs special attention. After complicated simplification (detail is in B.3), combining with

the spatial integral it will finally give

−
∫
Σt

α
√
γγijδ R

(D)
ijd

Dx =

∫
Σt

√
γ
[
(∇k∇kα)γ

ij −∇j∇iα
]
δγijd

Dx . (2.43)

The variation of the first term in the Hamiltonian (2.40) is finished.

2.2.2 The variation of the second term

Now comes to the second term. Before we start, we need to prepare some equations first. It is obvious that

the second term contains conjugated momentum dependence. Similar to the case in classical mechanics,

the conjugated momentum πij should be viewed as the independent variable, which means that δπij ≡ 0.

since we use γij as the basic variable (generic coordinate), But δπij is not zero. In this convention we

calculate the variable

δπ2 = 2πδπ = 2πδ
(
γijπ

ij
)
= 2ππijδγij , δπabπab = δ

(
πabγaiπ

ijγjb

)
= 2πj

kπ
kiδγij . (2.44)

The variation with respect to the second term becomes

− δ

∫
Σt

α
1
√
γ

[
1

(D − 1)
π2 − πabπab

]
dDx

= −
∫
Σt

αδ

(
1
√
γ

)[
1

(D − 1)
π2 − πabπab

]
dDx−

∫
Σt

α
√
γ

[
1

(D − 1)
2ππijδγij − 2πj

kπ
kiδγij

]
dDx

= +

∫
Σt

α

2
√
γ
γij
[

1

D − 1
π2 − πabπab

]
δγijd

Dx−
∫

2α
√
γ

(
ππij

D − 1
− πj

kπ
ki

)
δγijd

Dx

(2.45)

In fact, this is the only different term compared to the usual 3 + 1 ADM formalism.

2.2.3 The variation of the third term

Now we left with the third term in the Hamiltonian (2.40). Before we start to vary it with respect to

metric, we should do some simplification,

−
∫
Σt

2
√
γβi∇j

(
πj

i√
γ

)
dDx = −

∫
Σt

2
√
γ

[
∇j

(
βiπj

i√
γ

)
−

πj
i√
γ
∇jβ

i

]
dDx ,

= surface term +

∫
Σt

2πj
i∇jβ

idDx = surface term +

∫
Σt

2πij∇iβjd
Dx

(2.46)

Again, the surface term can be dropped. We focus on the variation of the non trivial term. There is a new

variable in this expression (βi). We have freedom to choose which one (βi or β
i) is the generic coordinate,

as long as we keep the calculation consistent. We choose βi as the generic coordinate for consistence. Now

we have

πijδ(∇iβj) = πij∇iβ
kδγjk + πijγjkβ

lδΓk
il . (2.47)
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The second term is

πijγjkβ
l 1

2
γkm (∇iδγml +∇lδγim −∇mδγil) = πijβl 1

2
(∇iδγjl +∇lδγij −∇jδγil) = πijβl 1

2
∇lδγij . (2.48)

Putting the whole term in the integral (detail is in B.4)

δ

∫
Σt

2πij∇iβjd
Dx =

∫
Σt

2πk(j∇kβ
i)δγijd

Dx−
∫
Σt

∇l

(
πijβl

)
δγijd

Dx , (2.49)

Now we have already overcome all the difficulties and are ready to provide the explicit form of the variation

δH =

∫
Σt

[
α
√
γ

(
R(D) ij − 1

2
R(D) γij

)
+
√
γ
[
(∇k∇kα)γ

ij −∇j∇iα
]
+

α

2
√
γ
γij
(

1

D − 1
π2 − πabπab

)
− 2α

√
γ

(
ππij

D − 1
− πj

kπ
ki

)
+ 2πk(j∇kβ

i) −∇l

(
πijβl

)]
δγijd

Dx .

(2.50)

The canonical equation for π̇ij is

π̇ij = − δH

δγij
= −

[
α
√
γ

(
R(D) ij − 1

2
R(D) γij

)
+
√
γ
[
(∇k∇kα)γ

ij −∇j∇iα
]
+

α

2
√
γ
γij
(

1

D − 1
π2 − πabπab

)
− 2α

√
γ

(
ππij

D − 1
− πj

kπ
ki

)
+ 2πk(j∇kβ

i) −∇l

(
πijβl

)]
.

(2.51)

3 Couple to matter field

3.1 General argument

Above we have built the ADM formalism in vacuum. According to the additive property of the Lagrangian

and action, if we want to couple the theory with matter field, the full Lagrangian of the gravitational

system is

L = LADM + LM , (3.1)

where the LM is the Lagrangian contributed by the matter field and the matter field also depends on the

metric field α, βi, γij . The full action becomes

S = SADM + SM =

∫
LADMdD+1x+

∫
LMdD+1x . (3.2)

Based on the stationary-action principle, the variation with respect to the metric gµν should be zero, i.e.

δS = 0. The variation with respect to the second term will gives us the energy momentum tensor. The

D + 1 dimensional energy momentum tensor is

Tµν :=
2√
−g

δLM

δgµν
, δLM =

√
−g

2
Tµνδgµν . (3.3)

3.2 Particle source

In order to make further progress, we choose a specific Lagrangian in the following calculation. Our purpose

is to find the point particle solution in arbitrary D + 1 dimension, so the action of the matter SM should
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be [4],

SM = −
∫

Mdτ
√
−gµν q̇µq̇ν , (3.4)

where introduce extra generic coordinate qµ and fix the gauge that q0 = τ(q̇0 ≡ 1). The Lagrangian (not

the Lagrangian density) of the matter and the corresponding conjugate momentum πq
i (keep in mind that

the subscript q emphasises that this the quantity relates to the particle) is

LM = −M
√

−gµν q̇µq̇ν ⇒ πq
i =

∂LM

∂q̇i
= −M

1

2

1√
−gµν q̇µq̇ν

(−2giν q̇
ν) =

Mgiν q̇
ν√

−gµν q̇µq̇ν
. (3.5)

Notice that q̇0 ≡ 1 and the metric could be written as

ds2 = −α2dt2 + γij
(
dxi + βidt

) (
dxj + βjdt

)
, (3.6)

we could rewrite the conjugate momentum πq
i and the Lagrangian (detail is in B.5)

πq
i = M

γij
(
q̇j + βj

)√
α2 − γij(q̇i + βi)(q̇j + βj)

LM = (q̇i + βi)πq
i − α

√
γijπq

i π
q
j +M2

(3.7)

We need the Lagrangian density LM , which we could obtain by adding the delta function,∫
LMdD+1x =

∫
dτLM =

∫
dτdD+1x

[
(q̇i + βi)πq

i − α
√

γijπq
i π

q
j +M2

]
δ(D+1)(xµ − qµ)

=

∫
dD+1x

[
(q̇i + βi)πq

i − α
√
γijπq

i π
q
j +M2

]
δ(D)(x⃗− q⃗) ,

(3.8)

while the last equal holds for we integrate over the τ . As a result, the Lagrangian density is

LM =
[
(q̇i + βi)πq

i − α
√

γijπq
i π

q
j +M2

]
δ(D)(x⃗− q⃗) . (3.9)

For preparing the calculation below, we compute the variation with respect to α, βi and δγij .

δαLM = −
√

γijπq
i π

q
j +M2δ(D)(x⃗− q⃗)δα (3.10)

δβi
LM = πq

i δ(β
i)δ(D)(x⃗− q⃗) = πqiδ(D)(x⃗− q⃗)δβi (3.11)

δγijLM = −απqiπqjδ(D)(x⃗− q⃗)δγij

2
√
γijπiqπqj +M2

. (3.12)

Now we want to compute the variation about LADM. Since we have already compute the variation about

HADM, we just need to apply the Legendre transformation that L =
∑

πγ̇ − H to get the results. Pay

attention that α and βi is not dynamical variable α̇ = β̇i ≡ 0. The ADM action is

SADM =

∫
dt

(∫
πij γ̇ijd

Dx−HADM

)
, (3.13)

11



variation with respect to the whole generic coordinate becomes

δSADM =

∫
dt

[∫
Σt

(
πijδγ̇ij + γ̇ijδπ

ij
)
dDx− δHADM

]
. (3.14)

In the last section we have already finished the calculation of δHADM. Based on the relation δSADM+δSM =

0, we could combine all these stuff and write down the complete dynamical equations of the system.

Variation with respect to α and −δαHADM + δαLM = 0 give

√
γ R(D) +

1
√
γ

[
1

D − 1
π2 − πabπab

]
−
√

γijπq
i π

q
j +M2δ(D)(x⃗− q⃗) = 0 . (3.15)

Variation with respect to βi and −δβi
HADM + δβi

LM = 0 give

2
√
γ∇j

(
πji

√
γ

)
+ πqiδ(D)(x⃗− q⃗) = 0 . (3.16)

Variation with respect to δγij and −π̇ijδγij − δγijHADM + δγijLM give

−
[
α
√
γ

(
R(D) ij − 1

2
R(D) γij

)
+
√
γ
[
(∇k∇kα)γ

ij −∇j∇iα
]
+

α

2
√
γ
γij
(

1

D − 1
π2 − πabπab

)
− 2α
√
γ

(
ππij

D − 1
− πj

kπ
ki

)
+ 2πk(j∇kβ

i) −∇l

(
πijβl

)]
− π̇ij − απqiπqjδ(D)(x⃗− q⃗)

2
√
γijπiqπqj +M2

= 0 .

(3.17)

Variation with respect to πij and γ̇ij − δπijHADM = 0 give

γ̇ij = ∇iβj +∇jβi +
2α
√
γ

(
πij −

π

D − 1
γij

)
. (3.18)

Variation with respect to qi and πq
i needs a little bit work. Since it is not related to the gravitational term,

we can focus on the variation of SM . The Hamiltonian density is

HM = πq
i q̇

iδ(D)(x⃗− q⃗)−
[
(q̇i + βi)πq

i − α
√
γijπq

i π
q
j +M2

]
δ(D)(x⃗− q⃗)

=
[
−βiπq

i + α
√

γijπq
i π

q
j +M2

]
δ(D)(x⃗− q⃗) .

(3.19)

The Hamiltonian canonical equation is

q̇i =
δHM

δπq
i

= −βi +
απqi√

γijπq
i π

q
j +M2

∣∣∣∣∣∣
x⃗=q⃗

, (3.20)

π̇q
i = −δHM

δqi
= −

∫ [
−βiπq

i + α
√
γijπq

i π
q
j +M2

] 1

δqi
δ(D)(x⃗− q⃗)dDx

=

∫
δ(D)(x⃗− q⃗)

δ

δqi

[
−βiπq

i + α
√

γijπq
i π

q
j +M2

]
dDx

= ∂i

[
−βiπq

i + α
√

γijπq
i π

q
j +M2

]∣∣∣
x⃗=q⃗

.

(3.21)
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The equation (3.15, 3.16, 3.17, 3.18, 3.20,3.21) gives the whole dynamical equations of theD+1 dimensional

point source gravitational model. To solve this system of equation we need some physical assumption and

symmetries to reduce the degrees of freedom.

Before we continue, we would like to emphasise that why we use these equations that looks much more

complicated to substitute elegant Einstein field equation (1.1). The reason is that we cannot write down a

general form of the Einstein tensor Gµν without assuming the dimension. Besides, our manifold is Lorentz

manifold, the signature (−,+, . . . ,+) forbids us to use the conformal symmetry to simplify the equation. In

ADM formalism, the time component and spatial components split and we could will take this advantage

to calculation the Ricci tensor within the D dimensional hypersurface, which is the basic idea that why we

choose ADM formalism.

4 Solution of massive point source gravitational model in D + 1 -

dimension

Consider the particle at rest, located at the origin of the coordinate system q0 = x0 = τ , qi = 0, i =

1, . . . , D. This system is static and spatially spherically symmetric, which means that βi ≡ 0. Eq. (3.20)

reduces to πqi ≡ 0. Eq. (3.21) reduces to

0 = π̇q
i = ∂i

[
−βiπq

i + α
√

γijπq
i π

q
j +M2

]∣∣∣
x⃗=q⃗

⇒ ∂iα|x⃗=0 = 0 . (4.1)

Eq. (3.18) reduces to (static metric)

0 = γ̇ij = ∇iβj +∇jβi +
2α
√
γ

(
πij −

π

D − 1
γij

)
⇒ πij −

π

D − 1
γij = 0

⇒ π − π

D − 1
D = 0 ⇒ π = 0 ⇒ πij = 0, .

(4.2)

Eq. (3.15) reduces to
√
γ R(D) −Mδ(D)(x⃗) = 0 . (4.3)

Eq. (3.16) reduces to the trivial identity. Eq (3.17) reduces to

α
√
γ

(
R(D) ij − 1

2
R(D) γij

)
+
√
γ
[
(∇k∇kα)γ

ij −∇j∇iα
]
= 0 . (4.4)

In summary, the non-trivial equations are

√
γ R(D) −Mδ(D)(x⃗) = 0 , (4.5)

α
√
γ

(
R(D) ij − 1

2
R(D) γij

)
+
√
γ
[
(∇k∇kα)γ

ij −∇j∇iα
]
= 0 , (4.6)

∂iα|x⃗=0 = 0 . (4.7)

In the following discussion, we assume that D ≥ 3 and we left D = 2 case in the next section, which is the

2+1 D dimensional gravity, to explain clearly that why it is so special and consider its geometry.
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4.1 Key equation

Using the spherically symmetric assumption, we set (for simplicity we use the assumption similar to [5])

γij = f−2
(√

δabxaxb
)
δij ⇒ √

γ = f−D . (4.8)

Now the question becomes that what is the general form of Ricci scalar R(D) under the conformally flat

metric. The general form of the Ricci scalar [5] is

R(D) = (D − 1)
[
2f∆f −D(∂f)2

]
(4.9)

where ∆ is the Laplace operator in Euclidean space ∆ :=
∑D

i=1
∂
∂xi

∂
∂xi , (∂f)

2 :=
∑D

i=1(∂if)
2. The key

equation (4.5) now becomes (D ≥ 2)

D − 1

fD

[
2f∆f −D(∂f)2

]
= Mδ(D)(x⃗) . (4.10)

Now the problem is just solving the PDE. Pay attention that we couldn’t multiply fD to the right hand side

because the metric is not well defined at the origin. Thanks to the spherical symmetry f(xi) = f(r(xi)),

we have

(∂f)2 =
D∑
i=1

(
∂f

∂xi

)2

=
D∑
i=1

(
∂f

∂r

∂r

∂xi

)2

=

(
∂f

∂r

)2 D∑
i=1

(
xi

r

)2

=

(
∂f

∂r

)2

. (4.11)

∆f =
1

rD−1

∂

∂r

(
rD−1∂f

∂r

)
+

1

r2
∆SD−1f , (4.12)

where ∆SD−1 is the Laplace-Beltrami operator on (D-1)-sphere. Since f has no angular dependence,

∆SN−1f ≡ 0. The equation (4.10) reduces to

D − 1

fD

[
2f

1

rD−1

∂

∂r

(
rD−1∂f

∂r

)
−D

(
∂f

∂r

)2
]
= Mδ(D)(x⃗) (4.13)

In order to solve this differential equation, we need to introduce some backgrounds about the Laplace

operator, which we provide in the appendix (C). We want to find the general solution for the key equa-

tion (4.13). Noticing that the Laplace operator acting on 1
rD−2 will generates the delta function, which is

proportional to the right hand side, we guess the solution takes the following form

f(r) =

(
1 +

rD−2
0

rD−2

)− 2
D−2

, (4.14)

inspired by the four dimensional Schwartzchild solution). r0 is the integral constant, whose physical

interpretation is the horizon radius related to the mass of the black hole. In appendix D , we prove that it

is indeed the general solution of the key equation. Here we have already seen that the solution is not valid

when D = 2. The three dimensional gravity starts to show its speciality.
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4.2 The solution of the time component

The answer is not complete since we do not solve the α. The equation for α is

α
√
γ

(
R(D) ij − 1

2
R(D) γij

)
+
√
γ
[
(∇k∇kα)γ

ij −∇j∇iα
]
= 0 ,

∂iα|x⃗=0 = 0 .

(4.15)

Contract γij on the both sides of the first equation, we have

α
√
γ

(
1− D

2

)
R(D) +

√
γ(D − 1)∆γα = 0 . (4.16)

Following the similar process as above, we can get the solution

α =

(
1− rD−2

0

rD−2

)
(
1 +

rD−2
0

rD−2

) . (4.17)

We solve the D+1 dimensional point source model analytically. In fact, the result is the same as the D+1

dimensional Schwarzschild black hole [3].

5 2+1 D gravity

5.1 Solution of the 2+1 D gravity

As we obtain in the last section, the general solution of the D + 1 dimensional gravity is not valid when

D = 2. The reason is that the differential operator is completely changed due to the reduction of dimension.

Consider f = eη. ∂if = f∂iη, ∂
2
i f = f(∂iη)

2 + f∂2
i η, substitute them into the key equation we will have

D − 1

fD

[
2f

D∑
i=1

(
f(∂iη)

2 + f∂2
i η
)
−D

D∑
i=1

(f∂iη)
2

]
=

D − 1

fD

[
(2−D)f2

D∑
i=1

(∂iη)
2 + 2f2

D∑
i=1

∂2
i η

]
. (5.1)

It is easy to see that if D = 2, the equation is very simple, which is the Poisson equation in the plane

2∆η = Mδ(2)(x⃗) , (5.2)

The answer to the question that why 2 + 1 dimensional gravity is so special is that the first derivative

part disappears after applying the conformal transformation, which totally changes the solution of the

differential equations. The solution is easy,

η =
M

4π
ln r . (5.3)

The equation (4.16) now becomes ∆α = 0. Combining with the boundary condition ∂iα|x⃗=0 = 0, we

conclude that α must be constant. By rescaling of the time coordinate, we can set α = 1. The full metric

is

ds2 = −dt2 + r−
M
2π
(
dr2 + r2dθ2

)
⇒ ds2 = −dt2 + r−8GM

(
dr2 + r2dθ2

)
. (5.4)
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There exists a naked singularity at the origin.

5.2 The geometry of one particle solution

The metric is obviously conformally flat. To see it more explicitly, we use another chart

ρ = α−1rα, θ′ = αθ, α ≡ 1− 4GM (5.5)

we could see that dρ = rα−1dr, dθ′ = αdθ, then the metric is

ds2 = −dt2 +
(
dρ2 + ρ2dθ′2

)
(5.6)

which is indeed the flat metric. One thing special here is the range of θ′, which is from 0 to 2πα =

2π(1− 4GM). When the mass is not so large m < 1
4G , the range is well-defined. However, when M = 1

4G

(α = 0), the transformation is singular. And the line element is

dl2 =
1

r2
(
dr2 + r2dθ2

)
= (d ln r)2 + dθ2 (5.7)

where r ranges from (0,+∞) and θ ∈ [0, 2π], The geometry is a periodic strip or infinite cylinder in

“Cartesian” coordinate (ln r, θ). For the case m > 1/4G (α < 0), the metric is

dl2 = r2α−2dr2 + r2αdθ2 (5.8)

If we adopt the transformation r = 1
u , which maps the center to the infinity and the infinity to the center.

The metric is

dl2 = u−2α−2du2 + u−2αdθ2 (5.9)

Remember α < 0, If we again change the coordinate

ρ′ = −α−1u−α, θ′′ = −αθ (5.10)

The metric

dl2 = dρ′2 + ρ′2dθ′′2 (5.11)

is again flat. It is easy to see that there exists a correspondence: when α < 0, it is equivalent to the case

that we put a particle at infinity with mass 1
2G − M . If we represent the spacetime using geometrical

approach, the deficit angle of the conical spacetime is β = 2π − 2πα = 8πGM , as the Figure 1 shown.

This geometric description tells us it seems that there is no interacting force between two static massive

particles since they doesn’t curve the spacetime. We will see it clearer in the later discussion.

5.3 N point particles solution

It is well known that we cannot get the analytic solution of three-body problem in the four dimensional

spacetime. However, due to the locally flatness in 2+1 D gravity, it is easy to find the solution with N

massive particles [2]. We don’t need to repeat the whole procedure to find solution. A smarter way is to

16



Figure 1: Deficit angle

assume that the metric takes the form

g = −dt2 + e2η(x,y)(dx2 + dy2) . (5.12)

The Einstein tensor

Gµν = gµαgνβGαβ = δµ0 δ
ν
0G00 = −δµ0 δ

ν
0e

−2η(x,y)

(
∂2η

∂x2
+

∂2η

∂y2

)
= −δµ0 δ

ν
0e

−2η∆η . (5.13)

To apply the Einstein field equation, we need the energy momentum tensor. Using the argument in

section (3), the energy momentum tensor is (the detail is in B.6)

Tµν :=
2√
−g

δLM

δgµν
⇒ T 00 =

m√
−g

δ(2)(xi) =
m√
−g

δ(2)(x⃗) . (5.14)

Remark 5.1. A question raises here. Is this assumption correct? It seems that we impose the condition

that all the particles will stay at the original position. In fact, it is true consistent. Here we provide a simple

argument, which is from [2], This setting for energy momentum tensor obviously satisfies the conservation

law ∇µT
µν = 0. This is consistent with the Euler-Lagrangian equation, which is the geodesic equation

ẍµ + Γµ
αβẋ

αẋβ = 0. For spatial part,

ẍi + Γi
αβẋ

αẋβ = 0 (5.15)

Recall the setting ẋµ(0) = (1, 0⃗), around t = 0, the equation reduces to

ẍi + Γi
00 = 0 ⇒ ẍi = −1

2
gij∂jg00 (5.16)

We already proved that g00 is a constant, which means that the spatial accelerations of the particle is

constant. So the setting is consistent. But if we set that the initial velocity is non-zero, the geodesic is not

straight line. So the interacting force depends on the velocity of the particle. It’s very different and strange

behaviour in 2+1 D gravity.
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So the non trivial Einstein field equation for the N particle case is

G00 = −e−2η∆η =
κ√
−g

∑
n

mnδ
(n−1)(r⃗ − r⃗n) , (5.17)

where κ is the coupling constant. Noticing
√
−g = e2η, the factor before the both sides of the equation

can be canceled. And then solution for η is just

lnΦ = −κ

π

∑
n

mn ln |r⃗ − r⃗n| ⇒ Φ =
∏
n

|r⃗ − r⃗n|−
κmn
π , (5.18)

where mi is the mass of the i-th particle. As we show above, the metric is still conformally flat.

5.4 The trajectory of the probe particle

To see the different behaviour of the 2+1 D gravity, we calculate the geodesic of the metric (5.4). In order

to avoid the singularity of the metric (r = 0), we go back to the Cartesian coordinate,

ds2 = −dt2 + (x2 + y2)−4Gm(dx2 + dy2) . (5.19)

The geodesic equations are

d2x

dτ2
+

4Gm

x2 + y2

[
−2y

dx

dτ

dy

dτ
+ x

(
−
(
dx

dτ

)2

+

(
dy

dτ

)2
)]

= 0 ,

d2y

dτ2
+

8Gm

x2 + y2

[
−2x

dx

dτ

dy

dτ
+ y

((
dx

dτ

)2

−
(
dy

dτ

)2
)]

= 0 .

(5.20)

The numerical solution is as the figure 2 shows.

6 Summary and discussion

In this paper, we first review the basic knowledge of general relativity and point out that it is not easy

to use in the usual field equation formalism. We want to use the spherical symmetry to find the solution

of point source model in D + 1 dimension. Because of the spherical symmetry, the metric only has two

degrees of freedom, α and f . Notice that the split of the time component and the spatial component can

help us investigate the geometry by studying the geometric properties restricting on the hypersurface Σt of

constant time t. Such a hypersurface is conformal to the Euclidean space, which helps us find the general

formula of the Ricci scalar. This inspires us to develop a new formalism of general relativity by splitting the

time and space and use Hamiltonian to describe the system. We emphasises that though ADM formalism

is well-known, usually this formalism is set to be in the 3+1 spacetime. We are the first one to write down

everything in detail under D + 1 dimension, carefully fixing the coefficients. ADM formalism is useful for

it is similar to what we do in classical mechanics. It might help us in the searching of the way to quantize

gravity.

After constructing the D + 1 dimensional ADM formalism, we couple this formalism with the matter

field. Also, we assume the source is just the static massive particle to make further progress. We finally get
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Figure 2: Plots of the numerical solution of the ODEs (5.20)
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the general solution of the differential equations, consistent with the Schwarzschild solutions in arbitrary

dimension. This provide a new track to obtain the Schwarzschild solution.

2+1 D gravity is special and we find the root reason: the form of the differential equation (or the Ricci

scalar) changes greatly. We show that the gravitational effect highly relates to the topological property of

the spacetime manifold again. In the section 5, we discuss its speciality by computing N particle solution

and geodesics. In modern theoretical physics, an important topic is the AdS/CFT correspondence and one

important example is AdS3 corresponds to the CFT2. This study of three dimensional gravity will give us

intuition towards the physics in the research.

References

[1] R. Arnowitt, S. Deser, and C. W. Misner. Dynamical structure and definition of energy in general

relativity. Phys. Rev., 116:1322–1330, Dec 1959.

[2] S Deser, R Jackiw, and G ’t Hooft. Three-dimensional einstein gravity: Dynamics of flat space. Annals

of Physics, 152(1):220–235, 1984.

[3] Chang Jun Gao. Arbitrary-dimensional schwarzschild–FRW black holes. Classical and Quantum Grav-

ity, 21(21):4805–4810, oct 2004.

[4] Pietro Menotti and Domenico Seminara. Adm approach to 2+1 dimensional gravity coupled to particles.

Annals of Physics, 279:282–310, 1999.

[5] Romildo Pina, Levi Adriano, and Mauricio Pieterzack. Prescribed diagonal ricci tensor in locally

conformally flat manifolds. Journal of Mathematical Analysis and Applications, 421(1):893–904, 2015.

A Linearized gravity and dynamical degrees of freedom of in Einstein

gravity

One important thing is that in three dimensional model, there is no physical degrees of freedom of the

metric. One way to prove this claim is to see the linearized approximation, which will dynamically trivial.

The linearized approximation is gµν = ηµν + hµν . Here we go through the details of this linearization

process for completeness. The Einstein field equation for arbitrary dimension is

Rab −
1

2
Rgab = κTab (A.1)

Variate both two sides of the equation about the metric, we have

δRab −
1

2
(δR)gab −

1

2
Rδgab = κδTab (A.2)

Consider it terms by terms, first

R d
abc (λ)−R d

abc = 2∇[aC
d
b]c (λ)− 2Cb

[a|e| (λ)C
e
b]c (λ) (A.3)
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where

Cc
ab (λ) = −1

2
gcd(λ) [∇agbd(λ) +∇bgda(λ)−∇dgab(λ)] (A.4)

Using the notation

δgab =
dgab(λ)

dλ

∣∣∣∣
λ=0

(A.5)

Then

δRac =
dRac

dλ

∣∣∣∣
λ=0

= 2∇[aδC
b
b]c (A.6)

δCc
ab =

dCc
ab (λ)

dλ

∣∣∣∣
λ=0

= −1

2
[∇aδgbd +∇bδgda −∇δgab] (A.7)

Because ∇agbc(0) = 0,

δRac =
1

2
gbd [∇b∇aδgcd +∇b∇cδgad −∇b∇dδgac −∇a∇cδgbd] (A.8)

δR = δ
(
gabRab

)
= (δgab)Rab + gabδRab (A.9)

δgab = −gacgbdδgbd (A.10)

we have
2δGab =−2hab +Rach

c
b +Rbch

c
a − 2Racbdh

cd +2hgab +∇a∇ch
c
b

+∇b∇ch
c

a −∇a∇bh−∇c∇dhcdgab +Rcdhcdgab −Rhab
(A.11)

where hab = δgab, h = gabhab. If we denote h̄ab = hab − 1
2hgab, the equation is

2δGab = −2h̄ab+Rach̄
c
b +Rbch̄

c
a −2Rabcdh̄

cd+∇a∇ch̄
c
b +∇b∇ch̄

c
a −∇c∇dh̄cdgab+Rcdh̄cdgab−Rh̄ab (A.12)

If we see the energy momentum tensor is the perturbation (The background is Minkowski space)

−2h̄ab+Rach̄
c
b +Rbch̄

c
a −2Rabcdh̄

cd+∇a∇ch̄
c
b +∇b∇ch̄

c
a −∇c∇dh̄cdgab+Rcdh̄cdgab−Rh̄ab = 16πTab (A.13)

There are some gauge degrees of freedom in the perturbation, we could choose the so called Lorenz gauge:

∇ah̄ab = 0 (A.14)

Then the equation simplifies to

−2h̄ab +Rach̄
c
b +Rbch̄

c
a − 2Rabcdh̄

cd +Rcdh̄cdgab −Rh̄ab = 16πTab (A.15)

Now the background spacetime is Minkowski spacetime, Rabcd ≡= 0, ∇a = ∂a. The equation reduces to

−2h̄ab = 16πTab (A.16)

∂ah̄ab = 0 (A.17)

In general a symmetric real matrix has n(n+1)/2 degrees of freedom. The Lorentz gauge has n equations,

which kills n degrees of freedom. However, we still have residual gauge freedom compatible with the Lorenz
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gauge. Consider the transformation,

h̄ab → h̄ab +∇aξb +∇bξa − (∇cξ
c) gab (A.18)

where ξa satisfies

∇a [∇aξb +∇bξa − (∇cξ
c)gab] = ∇a∇aξb +∇a∇bξ

a −∇b∇aξ
a = ∇a∇aξb +Rbcξ

c = 0 (A.19)

It is still compatible with Lorenz gauge. Then we would have extra n restriction. So the true degrees of

freedom is n2−3n
2 . Clearly if the n = 3, there is no degrees of freedom, which means that the metric is

dynamically trivial. If we want non trivial gravity dominated by Einstein field equation, we should consider

n ≤ 4, the magic 4 is the lower bound of the dimension.

B Calculation supplementary

In this appendix we provide more details of the calculation, supplementing the argument in the paper.

B.1 ADM formalism

Lemma B.1. The determinant of the whole spacetime metric satisfy g = −α2γ, where γ is the determinant

of γij.

Proof : It is convenient to consider the determinant of the inverse metric det(g) = 1
det(g−1)

, the determinant

of the inverse metric is ∣∣∣∣∣ − 1
α2

β⃗T

α2

β⃗
α2 γ−1 − β⃗β⃗T

α2

∣∣∣∣∣ (B.1)

where the β⃗ represents the vector (β1, β2, . . . , βn)T . For i-th row, we times βi of the 0-th row and add to

it, which doesn’t change the determinant, and it reduces to∣∣∣∣∣ − 1
α2

β⃗T

α2

0⃗ γ−1

∣∣∣∣∣ = −|γ−1|
α2

, (B.2)

which proves that g = −α2γ.

Calculation Detail B.1. The Hamiltonian density is

HADM = πij γ̇ij − LADM

=
√
γ
[
Kγij −Kij

]
(−2αKij +∇iβj +∇jβi)− α

√
γ
[
KijK

ij −K2 + R(D)
]

=
√
γ
[
−α

(
R(D) +K2 −KijK

ij
)
+ 2

(
Kγji −Kj

i∇jβ
i
)]

=
√
γ
[
−α

(
R(D) +K2 −KijK

ij
)
+ 2βi(∇iK −∇jK

j
i )
]
+ 2

√
γ∇j

(
Kβj −Kj

iβ
i
)
,

(B.3)

Calculation Detail B.2. The variation with respect to πij of C0 is

δC0

δπij
=

�
�
���δ R(D)

δπij
+ 2K

δK

δπij
− 2Kab δKab

δπij
, (B.4)
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since there is no dependence of πij is R(D) . Recall that δK
δπij = γab δKab

δπij , we have

⇒ δC0

δπij
=
(
2Kγab − 2Kab

) 1
√
γ

(
γabγij
D − 1

− γaiγjb

)
=

1
√
γ

(
�����������:
2Kγabγabγij

D − 1
− 2Kγij −

2Kγij
D − 1

+ 2Kij

)

=
1
√
γ

(
2Kij −

2Kγij
D − 1

)
.

(B.5)

Calculation Detail B.3. Here we show all the detail of the variation

γijδ R
(D)

ij = ∇c

(
γabδΓc

ab − γacδΓb
ab

)
. (B.6)

In order to compute it, we need the variation of the Christoffel symbol. We could evaluate this value in

the following way. For arbitrary point x0, in its Riemannian normal coordinate, the Christoffel symbol

vanishes at this specific point, its variation is just

δΓc
ab =

1

2
ηcd (∂aδgdb + ∂bδgad − ∂dδgab) , (B.7)

where ηad is the inverse of Minkowski metric. Recovering the tensorial notation, we have

δΓc
ab =

1

2
gcd (∇aδgdb +∇bδgad −∇dδgab) . (B.8)

Now using our notation, we have

δΓc
ab =

1

2
γcd (∇aδγdb +∇bδγad −∇dδγab) . (B.9)

The variation with respect to γij of the last term in the equation (2.42)

−
∫
Σt

α
√
γγijδ R

(D)
ijd

Dx = −
∫
Σt

α
√
γ∇c

(
γabδΓc

ab − γacδΓb
ab

)
dDx

= −
∫
Σt

∇c

[
α
(
γabδΓc

ab − γacδΓb
ab

)]√
γdDx+

∫
Σt

∇cα
(
γabδΓc

ab − γacδΓb
ab

)√
γdDx

= −surface term+

∫
Σt

∇cα
(
γabδΓc

ab − γacδΓb
ab

)√
γdDx .

(B.10)

At the boundary surface, the variation δγij vanishes, which means that we could drop the surface term.

This trick will be applied several times in the following calculations. The factor in the integral is

γabδΓc
ab − γacδΓb

ab = γab
1

2
γcd (∇aδγdb +∇bδγad −∇dδγab)− γac

1

2
γbd (∇aδγdb +∇bδγad −∇dδγab)

=
1

2

(
γabγcd − γacγbd

)
(∇aδγdb +∇bδγad −∇dδγab) ,

(B.11)
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Combining it with the other factor, we have

∇cα
(
γabδΓc

ab − γacδΓb
ab

)
=

1

2
∇cα

(
γabγcd − γacγbd

)
(∇aδγdb +∇bδγad −∇dδγab)

=
1

2

(
γab∇dα−∇aαγbd

)
(∇aδγdb +∇bδγad −∇dδγab)

=
1

2

[
∇dα∇bδγdb +∇dα∇aδγad −∇dα∇d(γ

abδγab)

−∇aα∇a(γ
bdδγdb)−∇aα∇dδγad +∇aα∇bδγab

]
= ∇aα∇bδγab −∇aα∇a

(
γcdδγcd

)
= ∇b (∇aαδγab)− (∇b∇aα)δγab −∇a

(
∇aαγcdδγcd

)
+∇a∇aα(γcdδγcd) .

(B.12)

Again, the total derivative term could be ignored, simplified result is

∇cα
(
γabδΓc

ab − γacδΓb
ab

)
=
[
(∇k∇kα)γ

ij −∇j∇iα
]
δγij , (B.13)

while the expression (B.10) becomes

−
∫
Σt

α
√
γγijδ R

(D)
ijd

Dx =

∫
Σt

∇cα
(
γabδΓc

ab − γacδΓb
ab

)√
γdDx

=

∫
Σt

√
γ
[
(∇k∇kα)γ

ij −∇j∇iα
]
δγijd

Dx .

(B.14)

We then finish the proof of the result (2.43).

Calculation Detail B.4. The details of the expression (2.49) is

δ

∫
Σt

2πij∇iβjd
Dx =

∫
Σt

(
2πij∇iβ

kδγjk + πijβl∇lδγij

)
dDx

=

∫
Σt

πk(j∇kβ
i)δγijd

Dx+

∫
Σt

√
γ∇l

(
1
√
γ
πijβlδγij

)
dDx

−
∫
Σt

√
γ∇l

(
1
√
γ
πijβl

)
δγijd

Dx

=

∫
Σt

2πk(j∇kβ
i)δγijd

Dx−
∫
Σt

∇l

(
πijβl

)
δγijd

Dx ,

(B.15)

where we ignore the surface term already and take the advantage of ∇iγ ≡ 0.

B.2 Couple to the matter field

Calculation Detail B.5. The detail of the expression (3.7) is

πq
i = M

γij
(
q̇j + βj

)√
α2 − γij(q̇i + βi)(q̇j + βj)

⇒ (q̇i + βi)πq
i = M

γij
(
q̇j + βj

)
(q̇i + βi)√

α2 − γij(q̇i + βi)(q̇j + βj)

⇒ γijπq
i π

q
j +M2 =

M2γij(q̇i + βi)(q̇j + βj)

α2 − γij(q̇i + βi)(q̇j + βj)
+M2 =

α2M2

α2 − γij(q̇i + βi)(q̇j + βj)

⇒ LM = (q̇i + βi)πq
i − α

√
γijπq

i π
q
j +M2

(B.16)

24



Calculation Detail B.6. The energy momentum tensor that describes N particle moving in the spacetime

is derived as below. Consider the usual action for free particles in special relativity:

S = −m

∫ √
−gµν ẋµẋνds (B.17)

where we choose the parameter is s. If we choose it as the proper time, it is S = −m
∫
ds. If we assume

that the particle trajectory is xµ(s), we could rewrite the integral as

S = −m

∫
dτ
√

−gµν ẋµẋν
∫

dsδ(n)(xµ − xµ(s)) (B.18)

The Lagrangian density is

L = −
∫

dsm
√

−gµν ẋµẋνδ
(4)(xµ − xµ(s)) (B.19)

Using the formula

Tµν =
−2√
−g

δL

δgµν
(B.20)

The energy momentum tensor of a point particle actually is

Tµν(xµ) =

∫
m√
−g

dγµ(τ)

dτ

dγν(τ)

dτ
δ(D+1) [xµ − γµ(τ)] dτ (B.21)

where γµ(τ) is the trajectory of the particle. Using the coordinate time and separate the delta function as

time component and spatial component

Tµν(t, xi) =

∫
m√
−g

dγµ

dτ
(t′)

dγν

dτ
(t′)δ(t− t′)δ(D)(xi − γi(t′))

dτ

dt
(t′)dt′ (B.22)

Finishing the integral and notice that there is a delta function,

Tµν(t, xi) =
m√

−g(xi, t)

dγµ

dτ
(t)

dγν

dτ
(t)δ(D)(xi − γi(t)) (B.23)

Using the condition that the particles stay at rest, the only non zero energy momentum tensor is

T 00 =
m√
−g

δ(D)(xi) =
m√
−g

δ(D)(x⃗) (B.24)

C Properties of the Laplace operator

Theorem C.1. The Green function of the operator −∆ +m2 (in the D dimensional Euclidean space) ,

which satisfies (
−∆+m2

)
G(x⃗, x⃗′) = Aδ(D)(x⃗− x⃗′) , (C.1)

is

G(r) =
A

(2π)D/2

(m
r

)D/2−1
KD/2−1(mr) , (C.2)

where r = |x⃗− x⃗′| and Kν(z) is the modified Bessel function of the second kind.

Proof : It is easy to see that the solution is rotational invariant (only relates to the relative distance r).
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The equation reduces to

− 1

rD−1

∂

∂r

(
rD−1∂G

∂r

)
+m2G(r) = A

δ(r)

ΩDrD−1
, (C.3)

where the factor ΩDr
D−1 comes from the volume element dV = ΩDr

D−1dr. Integrate both sides of the

equation over a spherical volume centered at the origin with radius r, then take the limit as r → 0, this

yields

lim
r→0

[
rD−1∂G

∂r

]
= − A

ΩD
. (C.4)

The homogeneous equation of G is

− 1

rD−1

∂

∂r

(
rD−1∂G

∂r

)
+m2G(r) = 0 . (C.5)

If we set G(r) = g(r)r−(D/2−1), the equation becomes

r2
∂2f

∂r2
+ r

∂f

∂r
−
(
D

2
− 1

)2

f −m2r2f = 0 . (C.6)

This is a standard ODE and its solution is

f(r) = CKD/2−1(mr) +DID/2−1(mr) , (C.7)

where ID/2−1 and KD/2−1 are modified Bessel functions of the first and second kind and C,D are constants

determined by boundary conditions. A natural boundary is that limr→∞G = 0, which requires that D = 0.

So

G(r) =
C

rD/2−1
KD/2−1(mr) . (C.8)

Using the condition when r → 0, we have

lim
r→0

[
rD−1∂G

∂r

]
= −Γ

(
D

2

)
2

D
2
−1m1−D

2 C = − A

ΩD
, (C.9)

where we use the approximate form of KD/2−1(mr) near r = 0. This implies

C =
AmD/2−1

2D/2−1Γ(D/2)ΩD
, (C.10)

with Ωd = 2πD/2/Γ(D/2) we have

C =
AmD/2−1

2D/2πD/2
. (C.11)

The solution is

G(r) =
A

(2π)D/2

(m
r

)D
2
−1

KD/2−1(mr) . (C.12)

Theorem C.2. The Green’s function of the operator −∆, which satisfies

−∆G = AδD(x⃗− x⃗′) , (C.13)
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is

G(r) = lim
m→0

Gm(r) =
A

(2π)D/2
lim
m→0

(m
r

)D/2−1 Γ(D/2− 1)

2

(
2

mr

)D/2−1

=
AΓ
(
D
2 − 1

)
4πDrD−2

(C.14)

Proof: This is direct since we already had the general Green function for operator −∆+m2.

D Proof of the solution

To verify it, we substitute it into the equation 4.13. First

1

rD−1

∂

∂r
rD−1 ∂

∂r
f =

1

rD−1

∂

∂r
rD−1

[
−2

D − 2
fD/2 ∂

∂r

(
1 +

rD−2
0

rD−2

)]

=
−2

D − 2

∂fD/2

∂r

∂f−D−2
2

∂r
+

−2

D − 2
fD/2

(
− 4πDrD−2

0

Γ(D/2− 1)
δ(D)(r⃗)

) (D.1)

⇒ 2f
1

rD−1

∂

∂r
rD−1 ∂

∂r
f = D

(
∂f

∂r

)2

+
16πDrD−2

0

Γ(D/2− 1)
fD/2+1δ(D)(r⃗) , (D.2)

where the first term cancels the first derivative part exactly. What we left is the term

16πD(D − 1)rD−2
0

Γ(D/2− 1)
f1−D/2δ(D)(r⃗) . (D.3)

At first glance it is not equal to the delta function in the right hand side (the factor f1−D/2). Let’s consider

it carefully. Using the specific form of f , we obtain

16πD(D − 1)rD−2
0

Γ(D/2− 1)

(
1 +

rD−2
0

rD−2

)
δ(D)(r⃗) . (D.4)

The unexpected term is
δ(D)(r⃗)

rD−2
. (D.5)

Recall that we should define the delta function as a functional. Inner product with arbitrary function

ϕ : RD → R is (
1

rD−2
δ(D)(r⃗), ϕ

)
. (D.6)

The expression δ(D)(r⃗)/rD−2 is proportional to

1

rD−2
∆

1

rD−2
. (D.7)

Let’s consider

∆
rλ

rD−2
=
[
λ2 + λ(2−D)

]
rλ−D + rλ∆

1

rD−2
. (D.8)

Analytically continued to λ = −(D − 2), we could rewrite the expression

1

rD−2
∆

1

rD−2
= ∆

1

r2D−4
− 2(D − 2)2r−2D+2 = 2(2−D)2

1

r2D−2
− 2(D − 2)2r−2D+2 ≡ 0 . (D.9)
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So we indeed find the solution f for the equation (4.10).
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