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1 Introduction

1.1 Brief review of gravitational model

General relativity is the foundation of modern theoretical physics. The key equation, which is the well-
known FEinstein field equation, is the starting point of some classical gravity research. The Einstein field
equation is
1
G.=R, — §RgW = KT — Aguw (1.1)

where g, is the spacetime metric, the elementary quantity to describe the gravity. I, and R is the Ricci
tensor and Ricci scalar computed by g,,. & is the coupling constant, usually in the unit of ¢ = 1, we set it
as 87G (in order to match with the Newtonian gravity). 7)., is the energy momentum tensor and A is the
cosmological constant. Throughout this paper, we only consider the universe with A = 0.

In order to prepare the discussion later and for completeness, we briefly review the basic mathematics
in general relativity. The gravity emerges from curved spacetime. In Riemannian manifold equipped
with metric g, we can define the covariant derivative V with respect to a specific connection s, T he

difference between connection coefficient can be eliminated by coordinate transformation so we just choose

the convenient convention, which is the Levi-Civita symbol, leading V,gg, = 0. The corresponding
Christoffel symbol is
1 ag
gy = iga (aﬁga’y + a’ygﬁa - aagﬁv) . (1'2)

The curvature is described by the non-commutativity of parallel transports, which is the definition of
Riemann tensor Rilkm ¢ (ViVi — Vi Vi) A = RilkmAi, where A; is an arbitrary 1-form. Then the
Riemann tensor is

We could then define the corresponding Ricci tensor and Ricci scalar, which is Ry, = R?,,,,, B = g"" R,

The Einstein field equation comes from the combination of least action principle and Einstein-Hilbert Sk

Sen = /dD+1m\/jg(R —2A), A=0. (1.4)

The variation with respect to ¢g"” will reproduce the Einstein field equation (|1.1). Though it looks simple,

the underlying partial differential equations are highly non-linear and complicated.



1.2 Questions and the structure of the paper

Nowadays the mainstream physics thinks that our real universe is 4 dimensional. However, the formulation
above doesn’t impose any restriction of the spacetime dimension. In other words, there might be “gravity”
in spacetime of lower or higher dimension. A natural question raises here: What happen if we consider
the gravity in 2+1 D spacetime (two spatial dimension and one time dimension, sometimes called three
dimensional gravity)? As we can expect, the degrees of freedom in 2+1 D gravity will be much less than
that in 4 dimension, which means that it might be exactly solvable. What about the higher dimensional
gravity? Is it possible to get analytical solution in higher dimensional gravitational model? The research
on these topics has long history and it is impossible to introduce all of them in this paper. We will focus
our attention on several simple questions. Those discussion can help us have some intuition toward the

gravitational model. These questions are

e What does the 241 D dimensional gravity look like? Is there any nontrivial dynamical effect in this

dimension?

e Suppose we consider the massive point source model in D 4+ 1 (D > 2) dimensional gravity, can we

provide the general solution of this model?

Before we discuss these questions before, we should remind that the degrees of freedom of the metric in
Einstein gravity theory is not the general (D + 1)(D + 2)/2 (the degrees of freedom of the real symmetric

metric). We have the following theorem below

Theorem 1.1. The real degrees of freedom in Einstein gravity theory is

D(D —1)

d.o.f=
o.f 5

—1. (1.5)

The proof of this theorem is in the appendix [A] For 2+1 dimensional gravity, D = 2, there is no
dynamical degrees of freedom in the theory (no gravitational wave!). It means that for any gravitational
field, the metric can be always deformed to the Minkowski metric. The gravitational behaviour in 2+1 D

is so special, in the following discussion, we will explore
e Why the 2+1 D gravity is so special? What’s the deep (geometric) reason behind this speciality?

In order to answer these questions, we first introduce ADM formulation of general relativity in D + 1
dimensional gravity. This is the content of section . After constructing ADM formalism in arbitrary
dimension, we will couple it with the matter field to rewrite the Einstein field equation in the presence of
matter source and matter current. In particular, we assume the matter field is the point source at rest
in order to make further progress. These final system of equation is written down in section . Then
the task is to solve this equation to get the general form of the metric, this is finished in section . We
prove that the solution is exactly the Schwarzschild solution in D + 1 dimension. In the section , we
will discuss the three dimensional gravity, explaining why it is so special. In the last section, we will have

a brief summary and discussion about the future work.



2 ADM formalism

2.1 Brief review of classical mechanics

In classical mechanics, the important quantity is the Lagrangian L, which is the function of generic coordi-
nate ¢; and its time derivative L = L(g;, ¢;). The action is S = [ Ldt. Based on the least action principle,

from 05 = 0, we can get the Euler-Lagrangian equation that dominates the dynamic of the system.

d (0L oL

— (=) —=—=0. (2.1)

dt 86_[1' 86]1'
As the usual textbooks suggest, the generic coordinate is the metric g"”, the variation of the action (|1.4))
with respect to the metric will generate the Einstein field equation (1.1). On the other hand, the equiv-
alent mechanism is the Hamiltonian formalism. Define the conjugate momentum p; as p; = (%’ and the

Hamiltonian of the system is H(p;,q;) = >_;pigi — L. The system of the equations that dominates the

dynamic of the system is the well know canonical equation

_oH . oH
- Op b= dqi

s (2.2)
This the basic idea of the ADM formalism, named for its authors Richard Arnowitt, Stanley Deser and
Charles W. Misner. We would like to write the dynamical equation of g#” is this form. The advantage of
this formalism is that it can split the time and spatial component, which is easy to deal with and sufficiently
use the symmetry to simplify the equations. Also, the Hamiltonian formalism can help us find the way to

quantize the gravity, which is the most important problem in modern theoretical physics.

2.2 ADM formalism

In usual context the ADM formalism is discussed in 4 dimensional spacetime[l]. However, in arbitrary
D + 1 dimension, there is a little bit difference. We need to extend the formalism to arbitrary dimension.
Mostly we just show the key steps and calculation results in the main text. Most of the details are put
in the appendix [B] Here we use D to denote the spatial dimension and the whole spacetime dimension is

D + 1. It is convenient to decompose the metric as
goo = —a® + 77 BiBj, goi = gio = Bis 9ij = Yij (2.3)

where the Latin indices run from 1 to D. 4% is the inverse of 75, i.e. yik'ykj = 5; This D+1 decomposition
of the metric replaces the metric components by the lapse function «(zx), the shift vector §;(x), and the
symmetric spatial metric v;;(z), where we use x to denote the point in the spacetime manifold. The inverse
spacetime metric components are

00 L o B

=T =g

g B

a?’

g7 =~ (2.4)

where B! = ¥ Bj. All Latin indices are raised and lowered using the spatial metric. The determinant
of the whole spacetime metric is g = det(g,,) = —a?y (The lemma in the appendix . The D + 1

decomposition separates the treatment of time and space coordinates. In the following discussion, we use



V; to denote the D dimensional covariant derivative with respect to , i.e
Vivij = 0. (2.5)

And we use V;k to denote its Christoffel symbol, which is

1
" (0571 + Okvjt — Oy - (2.6)

7;k52

In this D + 1 approach, spacetime is described by a set of D-dimensional hypersurfaces of constant time

t = 2V propagating forward in time. The intrinsic curvature, described by the Riemann tensor, is

(VeVin — Vi Vi) Vi= PR V3, (2.7)

or the component description,
PR o = OV = OV + Vi W = VoV - (2.8)
The D spatial dimensional Ricci tensor is (D)Rij = (D)Rkikj and the Ricci scalar (PR = ~% (D)Rij. The

left subscript (D) emphasises that it is the geometric quantity of the D dimensional hypersurface. In
addition to the intrinsic curvature, the hyperspace of constant time also has an extrinsic curvature (or

second fundamental form) Kj; is

L (i, + 38 — 0wy (2.9)

K = 2a

The relation between the intrinsic and extrinsic curvature of the constant-time hypersurfaces and the D +1

dimensional Riemannian tensor based on Gauss-Codazzi equations
D+1) 50 1
(PR W= (ViKj — ViKj) (2.10)

and
PR = PR~ PTYRY BT+ K G — K Ky (2.11)

The other component of the D + 1 dimension Riemann tensor is

1 1 1
(D+1)RO,L~0J- = —EatKij - szK]k — avZ‘v]‘O& + E [Vj (5kKZk> + Kjkvzﬁk} y (212)
and
(DH)Rkin _ (DH)RkiljBl I (DH)ROz‘ljﬁl _ (DH)ROin} 85 +a |:ka1']‘ _ viKkj] ' (2.13)



The Einstein tensor defined by G, = (DH)RW — 1P+ Rg,, is

H y
o0 _ " — I 12 (D)
G sz A=V [KWK K R} , (2.14)
. H A B . g g
GUi = &7 T i =0 Vs (KU — KAy 2.15
TENCENE VAV ( ), (2.15)
. 5%‘53'%& 1 L Dy i L .
ij P (D) pij _ = (D) paii 2.1
G 2a2ﬁ+aﬁat(ﬁ )+ R = SRy (2.16)
1 o - 1 o o L
~ = (VIV/ =792 a + —V (8P + g7 P — g+ pi) (2.17)
. o1 1 g
+ 2Pi Pk _ ppii 3 <P“Pkl - 2P2> 79, (2.18)
where K := ’yinij,
P = Ky - KY  P:=~;PY. (2.19)

The components of the D + 1 dimensional Riemann and FEinstein tensors are raised and lowered using the
D + 1-dimensional metric. Components of all other quantities like K;;, F;;, DR ki Are raised and lowered

using 7;;. The D + 1 dimensional Ricci scalar is
V=g PR = a\/y [KUK"J' ~ K%+ <D>R} —20,(VAK) + 20; [VA(KB — Via)] . (2.20)

The last two terms are total derivative, if we treat it as the Lagrangian, it will be the surface term, which

doesn’t contribute to the equations of motion. So the Lagrangian density -Zapm is
fADM = aﬁ [KZ]K” — K2 —|— (D)R} 5 SADM[O[,ﬁi,’)/Z'j] = /dD—Hl‘ZADM . (221)

Here we have already used the units that 167G = 1|H

Remark 2.1. One useful observation is that in the ADM Lagrangian there are no dependence on & and
Bt, which means that these variables are not dynamical variables. The only non-trivial dynamical variable

is vij- The canonical momentum conjugated to v;j is 7 which is defined as

_ 0ZLapm

" _ 2.22
P, (2.22)
Noticing that the time derivative of the v;; only appears in the K;; (Eq. ,
1 OK 1
Kij = 5 (Vif; + Vibi = 0vij) = T,.Y;j = — 5, 0aidj (2.23)
the conjugated momentum " is
. 0Z 0K, 0K
9 = ‘.4DM _ ﬁ <2Kab : ab Q,Yab,ychcd : ab)
Vi Vi i (2.24)

_ _ﬁ (Kab(sai(sbj B K'Yab(sai(sbj) _ \ﬁ [K’y” _ KU] — ﬁpl] .

In D + 1 dimensional gravity, the coupling constant is slightly different, for simplicity we let all of them to be 1.




The Hamiltonian density obtained through the Legendre transformation of Zapy is (detail is in [B.1]),

Hapm = T Yij — ZLapm

=7 [~a (PR + K? - KyKY) + 281(ViK - V,K7)| + 27, (K8 - K987) | (2.25)

The corresponding Hamiltonian is

HADM = %DMde7 (2.26)
pM

where the ¥ represents the hypersurface of the constant time ¢. The last term of the equation (2.25)) is

the divergence term, which doesn’t contribute to the integral, so the Hamiltonian density can be written

as
Hapy = — / (aCy — 2B°C;) \/ydPx (2.27)
¢
where
Co:= PR+ K?— Ki;K", (2.28)
Ci = V,;K’, - VK. (2.29)
The canonical equation is
0ZLApMm . dHApMm
804 3 ™ 50( 0 ( )
i 8$ADM o . q 5HADM i
: OHapm .45 dHapm
;= DM = qid — 2 ADM 2.32
V0T T 0 22

The above system of equations describes the dynamics of the gravitational system with no matter field.
One might be confused that if Cy = C; = 0, Hapm = 0. It is true if the Hamiltonian is on-shell. The
physical interpretation is that the total energy of the system is zero since there is no source or current.
However, this doesn’t mean that the dynamics is trivial. The dynamical part is included in the last
equation. We want the explicit form of these two equations. Recall that the relation between 7% and K%

and the important relation 7*~y, = D:

T = ¥ K’sz—K” = T = ’7"71'2]: ’Y(D_l)K = KZ*?
vall ] i v V(D —1)
.. 1 T . . 1 s i
= KY= \ﬁ (D — 17” — 7r”> = Kg= \ﬁ (D_l’yab - %ﬂ”%’b) : (2.33)

omid Nal

6Kab_ 1 ( VYab 0T 1 <7ab'7ij

D — 1674 - fYai’yjb) = ﬁ D_1 - ’Yai’}/jb>

In order to compute %, we need to compute gg} and gf,’; separately. It is easy to see that gfi’; =
because %ﬁg’ ~ 7 and V75 = 0. The rest part is (detail is in }
6Cy :5(D)R+2K5K _QKGb%:i ”_2K’7ij (234)
o o omd ot V7 Y D-1 ’



Then

) 0H K~
§ij =+ = —2a (KW — = ) . (2.35)

Expanding the following equation, we have

. . QOJK 3q 2aK i
$ij = — (Vi + V8;) + i + oo (Vi + Vi) = 10 (2.36)

D—-1 D-1

o0H
5 = —2aK;; +V;B; +V;B;. (2.37)
If we write the equation using the canonical variable, then
2c T

72] = vlﬁj +V; /Bz - \ﬁ ﬁ"ﬁj — T | - (238)

Now comes to the most complicated equation 7;; = %. In order to compute it, we first rewrite the Hamil-
tonian with the canonical variables by expanding all the K, dependence. The terms in the Hamiltonian

noe become

1 7 T 1 2—-D
KabKab: ; (D_l,yab_ﬂab> (D_17ab_7rab> - ; <(D_1)27r2+7rab7rab> )

2

™ 1 1
L = KQ—K“be:{
7(D —1)? Cy (D=1

C; = VjKji _Vz‘KZVj <\/7(D—1)53 — \/%> -V (\/’V(D_l)> = —Vj (\/%) .

the Hamiltonian is

HADM:/E [—af( R+ K2~ KyK'T) - 278V <5%)]de

K?= - 7Tab77ab:| ; (2.39)

; (2.40)
1 1 . .
_ (D) D,.. - 2 _ab D, i . 7 D
= /Y Rdﬂ:/a [ Wwwb}d:v/Q’yﬁV d”zx
/zt VI s V7 LD-1) ¢ zt\f "\
We want to compute the variation with respect to v;;, some building blocks are needed,
&y =16, 07 = 757 = ﬁ’yim%‘j, Yij077 = =765,
f
(2.41)
59T = G 6 (=) = 2y 32y = — iy,
a ’ \ﬁ 2 2\/» i

2.2.1 The variation of the first term

The variation of the first term in the Hamiltonian is standard, which just reproduces the Einstein field

equation within the D dimensional hypersurface.
ij (D ij (D ij 5(D
6 (VIPIR) =8 (vin T PR,,) = (6v7) PR + A0y PR 4+ s PRy,

(2.42)
= f( DR 4 1( )RPYZJ) i + f’y”(s(D)R



The last term needs special attention. After complicated simplification (detail is in [B.3)), combining with
the spatial integral it will finally give

—/ aﬁvijé(D)Ridi:L‘ = VY [(Vkvka)'yij — Vjvia] §7ijdPx . (2.43)
P

3t

The variation of the first term in the Hamiltonian (2.40) is finished.

2.2.2 The variation of the second term

Now comes to the second term. Before we start, we need to prepare some equations first. It is obvious that
the second term contains conjugated momentum dependence. Similar to the case in classical mechanics,
the conjugated momentum 7% should be viewed as the independent variable, which means that é7% =

since we use +;; as the basic variable (generic coordinate), But d7;; is not zero. In this convention we

calculate the variable
om? = 2ném = 276 (’yijﬂij) = 27r7rij5’yij ) <7Tab’yai7rij’yjb) = 27Tjk7rki(5’yij ) (2.44)

The variation with respect to the second term becomes

1 1
-0 Etaﬁ |:(‘D]')

! 1 1 3 o
) _/z “ (\ﬁ> [(Dl)”2 ) ”ab”“"} e /2 Vi {(Dl)?””% - 277%77’“57@7} Pz (2.45)
@ ij 1 a 204 7T7rij . i
o /Zt 2\ﬁ7 ] [D - 17r2 - bwab} g / Nai (1)_1 -yt ) 5vi;dPx

In fact, this is the only different term compared to the usual 3 +1 ADM formalism.

- 7Tab7Tab:| dPz

2.2.3 The variation of the third term

Now we left with the third term in the Hamiltonian (2.40). Before we start to vary it with respect to

metric, we should do some simplification,

—/Etzﬁﬂivg‘ (j%) 7z = —/Et 2V

= surface term + /
p3

ﬁiﬁj ) ﬂ_j' . B

V; <‘ - Va8 d

V1) VT (2.46)
27rjivjﬁide = surface term + / 27rijvlﬂdix

pI

Again, the surface term can be dropped. We focus on the variation of the non trivial term. There is a new
variable in this expression (3*). We have freedom to choose which one (3; or 8¢) is the generic coordinate,
as long as we keep the calculation consistent. We choose 3? as the generic coordinate for consistence. Now

we have

T98(ViB)) = TN 856y,5 + 7y BLOTE (2.47)



The second term is
i ol km ij ol 1 ij ol
kB 37 (Vi0Ymi + Vi0Yim — Vimdvi) = 7 5 (Vidyji + Vidvij — Voyy) =73 §Vl5%;j- (2.48)
Putting the whole term in the integral (detail is in B.4)
5 / 271V, B;dPx = / 2740, 80 5,;dP e — / v, (98') oy, (2.49)
I 3t 3t

Now we have already overcome all the difficulties and are ready to provide the explicit form of the variation

OH = [a\f <<D R — ( Rw> V7 [(VHVka)y - ViTia] +
pM
: ) y (2.50)
Qg 2 _ab L B j i ij ol D
Q\ﬁ’y (Dlﬂ' T 7rab> ﬁ(Dl 7Tk7T )+27T Vk,é’ (7r ﬁ)}é’mdm
The canonical equation for 7% is
i = OH {a\f <<D R — ( >R~y”) V7 [(VHVka)y - ViTia] +
0% (2.51)

1 2 i y
2\%7” (D — 17r2 — 7Tab7'('ab> — \/(; <g7r_1 kﬂ' ) + 27k Jvkﬁl (leﬁl)] .
3 Couple to matter field

3.1 General argument

Above we have built the ADM formalism in vacuum. According to the additive property of the Lagrangian
and action, if we want to couple the theory with matter field, the full Lagrangian of the gravitational
system is

L = Lrom + L, (3.1)

where the £ is the Lagrangian contributed by the matter field and the matter field also depends on the

metric field o, 3%, 7;;. The full action becomes

S = SADM + SM = /.ﬁ,ﬂADMdD—Hl' + /gMdD—HJ:‘. (3.2)

Based on the stationary-action principle, the variation with respect to the metric g,, should be zero, i.e.
08 = 0. The variation with respect to the second term will gives us the energy momentum tensor. The

D + 1 dimensional energy momentum tensor is

oo 2 02%u
. V=g 5g,uu ’

5L = —V;QT“”(SgW. (3.3)

3.2 Particle source

In order to make further progress, we choose a specific Lagrangian in the following calculation. Our purpose

is to find the point particle solution in arbitrary D + 1 dimension, so the action of the matter Sy, should

10



be 4,

Su = _/MdT Y _glwq,uqu? (3'4)
where introduce extra generic coordinate ¢* and fix the gauge that ¢ = 7(¢° = 1). The Lagrangian (not

the Lagrangian density) of the matter and the corresponding conjugate momentum 7 (keep in mind that

the subscript ¢ emphasises that this the quantity relates to the particle) is

T aLM 1 1 Mgiuqy
Ly =-My/—guwi*q’ = nl=—F=-M-———(-201¢") = ———.
v i 3ql 9 —g,ﬂ,q“q”( i ) /7_gmlquqy

Notice that ¢° = 1 and the metric could be written as
ds® = —a’dt® + ;5 (dz’ + B'dt) (da? + pldt)
we could rewrite the conjugate momentum 7} and the Lagrangian (detail is in [B.5))

4 Yij (7 + B7)
L Ve (@ + B+ )

Lot = (§f + B! — oy [7mint + 12

We need the Lagrangian density %, which we could obtain by adding the delta function,

/.,Q”MdD'Hx = /dTLM = /deD+la: [(qZ + 87 — ay [yimin] + M? P (zh — g
= /dDHx [(q’ + Bi)ﬂ'g — iy /’yijﬂgﬂ'? + M2 (5(D)(§:'— 7,

while the last equal holds for we integrate over the 7. As a result, the Lagrangian density is

L = [(d + B! — it + M2| 6P (i - ).

For preparing the calculation below, we compute the variation with respect to o, ; and d+;;

Satrr = —/vimind + M26P)(& - §)da
0p.%r = wi5(8)6 PN (& — @) = 76 PN(F - §)9B;

an®m 5P (F — §)di;
2\/’}/Z‘j77iq7TQj + M2

5%‘ng ==

(3.5)

(3.7)

(3.8)

(3.10)
(3.11)

(3.12)

Now we want to compute the variation about Zspy. Since we have already compute the variation about

A DM, we just need to apply the Legendre transformation that £ = > m% — S to get the results. Pay

attention that o and f; is not dynamical variable & = BZ = 0. The ADM action is

SADM = /dt </ m4;dPw — HADM> :

11

(3.13)



variation with respect to the whole generic coordinate becomes
0SADM = /dt [/ (Wij(s"yij + ")/Z‘j(sﬂij> dPz — 5HADM] . (3.14)
pa

In the last section we have already finished the calculation of § Hapn. Based on the relation 6Sapm+38Sy =
0, we could combine all these stuff and write down the complete dynamical equations of the system.

Variation with respect to a and —d0,ApmM + 0Ly = 0 give

OB L[l ] -\ SO =0 (3.15)

Variation with respect to 3; and —dg,#Apm + 05,2y = 0 give

2,7V (%) + 79PN Z - ) =0. (3.16)

Variation with respect to 6v;; and —ﬁijéfyij — 0y HADM + 0, L0 give

» » o » 1
- [af < IR <D>Rw> 7 [(v’“vka)w - V]V’a] + 2\0}7” < S 7r“b7rab>

g (3.17)
- ( LRSS T ) + 2770V, 6 — <7Tij51>] — 7 — amr§ON& @) _
\/’7 D-1 2\/")/1']‘7['“171"1] + M?
Variation with respect to 7%/ and Yij — Ogii #ADpM = 0 give
2¢ s
ij = Vibj + Vi + A\ T o) (3.18)

Variation with respect to ¢* and W? needs a little bit work. Since it is not related to the gravitational term,

we can focus on the variation of Sp;. The Hamiltonian density is

Hig = w87 - @) — [(¢" + B)n a\/wqwq + 02| 6P) (7 — )

(3.19)
- [ Binl + oy [yiminl + M2| 6P - q).
The Hamiltonian canonical equation is
. §H . a
i M an (3.20)

('=—g=-"0+—"7= )
T \yImiE] M2
T=q

H : Iy ] 1
71';1 = —55qu\4 = —/ |:—/627T,? + « fyzﬂﬂ'gﬂ'? + _1\42 qu(;(D)(f— CDdDJJ
1) ) —
:/5(D)(a_:’—q_')5qi {—ﬂzwiq—ka,/vwﬁgqu»—kMz dPz (3.21)
=0 [—Biﬂ'g + ay /")/ijﬂ'gﬂ'? + M2

T=q

12



The equation (3.15] [3.16}3.17} [3.18 [3.20}§3.21)) gives the whole dynamical equations of the D+1 dimensional

point source gravitational model. To solve this system of equation we need some physical assumption and

symmetries to reduce the degrees of freedom.

Before we continue, we would like to emphasise that why we use these equations that looks much more
complicated to substitute elegant Einstein field equation . The reason is that we cannot write down a
general form of the Einstein tensor G, without assuming the dimension. Besides, our manifold is Lorentz
manifold, the signature (—, 4+, ..., +) forbids us to use the conformal symmetry to simplify the equation. In
ADM formalism, the time component and spatial components split and we could will take this advantage
to calculation the Ricci tensor within the D dimensional hypersurface, which is the basic idea that why we

choose ADM formalism.

4 Solution of massive point source gravitational model in D + 1
dimension

Consider the particle at rest, located at the origin of the coordinate system ¢° = 20 = 7,¢* = 0,7 =

1,...,D. This system is static and spatially spherically symmetric, which means that 8 = 0. Eq. (3.20))
reduces to 7% = 0. Eq. (3.21)) reduces to

0="7] =0 [—ﬁiﬂ';] + vy /7”77?#? + M2

T=q

= Oialy_,=0. (4.1)

Eq. (3.18) reduces to (static metric)

. 2a T T
0="i = Vibj + VB + NGi <7rij D1 1%’;‘) = mij = 5% =0

A (4.2)
= W—mDZO = =20 = 7Tij:0,.
Eq. (3.15) reduces to
VIPIR — MsP)(#) = 0. (4.3)
Eq. (3.16) reduces to the trivial identity. Eq (3.17]) reduces to
ay/y ( JRY — ( R'y“) vV [(Vkvka)'yij — V/Via| =0. (4.4)
In summary, the non-trivial equations are
VIPIR — MsP)(2) =0, (4.5)
ay/Ay ( DRI — ( >wa) +q [(vkvka) — ViVia| =0, (4.6)
9105y = 0. (4.7)

In the following discussion, we assume that D > 3 and we left D = 2 case in the next section, which is the

2+1 D dimensional gravity, to explain clearly that why it is so special and consider its geometry.
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4.1 Key equation

Using the spherically symmetric assumption, we set (for simplicity we use the assumption similar to [5])

v =17 (Vo) oy = =10, (4.8

(D)

Now the question becomes that what is the general form of Ricci scalar “/R under the conformally flat

metric. The general form of the Ricci scalar [5] is
IR = (D —1) [2fAf — D(0f)’] (4.9)

where A is the Laplace operator in Euclidean space A := Z?Zl 8% a?ci’ (0f)? := Zle(@f)z. The key
equation (4.5) now becomes (D > 2)

fo>1 2fAf = D(@£)?] = M5'D)(7). (4.10)

Now the problem is just solving the PDE. Pay attention that we couldn’t multiply f? to the right hand side
because the metric is not well defined at the origin. Thanks to the spherical symmetry f(z) = f(r(z?)),

oS (@B @)

i=1

we have

Apo L 0 (Tp-laf> + %ASD,lf, (4.12)

~ D=1 or

where Agp-1 is the Laplace-Beltrami operator on (D-1)-sphere. Since f has no angular dependence,
Agn-1f =0. The equation (4.10f) reduces to

D-1 1 8 ( p ,0f AN D)=
7D lszD18T<r 87“>_D<87’>]_M5 () (4.13)

In order to solve this differential equation, we need to introduce some backgrounds about the Laplace

operator, which we provide in the appendix . We want to find the general solution for the key equa-
tion 1) Noticing that the Laplace operator acting on TD%Q will generates the delta function, which is

proportional to the right hand side, we guess the solution takes the following form

oo\~
f(r)=<1+:?3_2> : (4.14)

inspired by the four dimensional Schwartzchild solution). 7y is the integral constant, whose physical
interpretation is the horizon radius related to the mass of the black hole. In appendix |D|, we prove that it
is indeed the general solution of the key equation. Here we have already seen that the solution is not valid

when D = 2. The three dimensional gravity starts to show its speciality.
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4.2 The solution of the time component

The answer is not complete since we do not solve the a. The equation for « is

mﬁ(”%ﬁ—meﬁﬁ+V@RWVWw“—Wvu-—m

(4.15)
87;a‘f:0 =0.
Contract 7;; on the both sides of the first equation, we have
D (o)
a7y | 1-— 5 R+ /v([D-1)A,a=0. (4.16)

Following the similar process as above, we can get the solution

__<1_:%;>‘ (4.17)

We solve the D + 1 dimensional point source model analytically. In fact, the result is the same as the D+ 1

dimensional Schwarzschild black hole [3].

5 241 D gravity

5.1 Solution of the 241 D gravity

As we obtain in the last section, the general solution of the D + 1 dimensional gravity is not valid when
D = 2. The reason is that the differential operator is completely changed due to the reduction of dimension.
Consider f = €. 0;f = fom, 02 f = f(9m)? + f0?n, substitute them into the key equation we will have

D

D
! [(2—D>f2z<am>2+2f2283n . (5.1)
=1

=1

D-1[ & D D_
e 2f Y (f(0m)* + fOin) — DZ(fam)zl =D
i=1 i=1

It is easy to see that if D = 2, the equation is very simple, which is the Poisson equation in the plane
2An = M&?)(z), (5.2)

The answer to the question that why 2 + 1 dimensional gravity is so special is that the first derivative
part disappears after applying the conformal transformation, which totally changes the solution of the

differential equations. The solution is easy,

n= % Inr. (5.3)

The equation now becomes Aa = 0. Combining with the boundary condition J;a|z—¢g = 0, we

conclude that a must be constant. By rescaling of the time coordinate, we can set a = 1. The full metric
is

ds® = —di* +r7 2 (dr? +12d0%) = ds® = —dt? + M (@2 4 r%d6?) . (5.4)
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There exists a naked singularity at the origin.

5.2 The geometry of one particle solution

The metric is obviously conformally flat. To see it more explicitly, we use another chart
p=ar* 0 =a, a=1-4GM (5.5)
we could see that dp = r®~!dr, d§’ = adf, then the metric is
ds* = —dt* + (dp* + p*d0’) (5.6)

which is indeed the flat metric. One thing special here is the range of #’, which is from 0 to 27a =
27(1 — 4GM). When the mass is not so large m < é, the range is well-defined. However, when M = i

(o = 0), the transformation is singular. And the line element is

1
dI* = — (dr* +1%d%) = (dInr)? + db” (5.7)

where r ranges from (0,+00) and 6 € [0,27], The geometry is a periodic strip or infinite cylinder in
“Cartesian” coordinate (Inr,#). For the case m > 1/4G (a < 0), the metric is

di* = r**2dr® 4 2 d6” (5.8)

If we adopt the transformation r = %, which maps the center to the infinity and the infinity to the center.
The metric is

di* = w22 du? + u2*d> (5.9)

Remember a < 0, If we again change the coordinate
pl=—atu 0'=—ab (5.10)

The metric
di* = dp”* + p?do" (5.11)

is again flat. It is easy to see that there exists a correspondence: when o < 0, it is equivalent to the case
that we put a particle at infinity with mass %G — M. If we represent the spacetime using geometrical
approach, the deficit angle of the conical spacetime is § = 27 — 2mra = 87GM, as the Figure [I] shown.
This geometric description tells us it seems that there is no interacting force between two static massive

particles since they doesn’t curve the spacetime. We will see it clearer in the later discussion.

5.3 N point particles solution

It is well known that we cannot get the analytic solution of three-body problem in the four dimensional
spacetime. However, due to the locally flatness in 2+1 D gravity, it is easy to find the solution with N

massive particles [2]. We don’t need to repeat the whole procedure to find solution. A smarter way is to
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B =8nGm

Figure 1: Deficit angle

assume that the metric takes the form

g = —dt? + 2"V (dx? + dy?) . (5.12)
The Einstein tensor
% po v 1¥v% w v —2n(z,y) 8277 8277 WSy —2n
GM" = gl 9" Gop = 905 Goo = —dy g e ’ @—l—a—y? = —0pdpe” “"An. (5.13)

To apply the Einstein field equation, we need the energy momentum tensor. Using the argument in
section , the energy momentum tensor is (the detail is in

2 0%y
T = —— = = —
Yo'l 5g;w Yo'l

Remark 5.1. A question raises here. Is this assumption correct? It seems that we impose the condition

@) = —6P(2). (5.14)

that all the particles will stay at the original position. In fact, it is true consistent. Here we provide a simple
arqgument, which is from [2], This setting for energy momentum tensor obviously satisfies the conservation
law V,TH = 0. This is consistent with the Euler-Lagrangian equation, which is the geodesic equation
P4 I‘“aﬁfcadcﬁ = 0. For spatial part,

e A (5.15)

Recall the setting (0) = (1,6), around t = 0, the equation reduces to

. . . 1 ..

4T =0 = i'= —§gzjajgoo (5.16)
We already proved that goo is a constant, which means that the spatial accelerations of the particle is
constant. So the setting is consistent. But if we set that the initial velocity is non-zero, the geodesic is not
straight line. So the interacting force depends on the velocity of the particle. It’s very different and strange

behaviour in 2+1 D gravity.
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So the non trivial Einstein field equation for the N particle case is
GO = e 2Ap = L S s (F - 7)), (5.17
V=9 Zn: " 2 )

where x is the coupling constant. Noticing /—¢ = €27, the factor before the both sides of the equation

can be canceled. And then solution for 7 is just

K N L L _kmn
lnq):—;Zmnln]r—rn\ = @=H|7“—7“n| T (5.18)
n n
where m; is the mass of the i-th particle. As we show above, the metric is still conformally flat.

5.4 The trajectory of the probe particle

To see the different behaviour of the 24+1 D gravity, we calculate the geodesic of the metric ((5.4)). In order

to avoid the singularity of the metric (r = 0), we go back to the Cartesian coordinate,

ds? = —dt® + (2% + y*) 74 (da® + dy?) . (5.19)
The geodesic equations are
d’x 4Gm dx dy dz\? dy 2
—+—— | 2y—— - = = =0
dr? ~V_JUQ—i-gP ydeT—l-:L“( <d7‘> * <d7’> ’
) ) (5.20)
Py, sGm [ dedy | (an\ (a)?\]
dr? = 22+ y? drdr Y\ \ar dr -

The numerical solution is as the figure [2| shows.

6 Summary and discussion

In this paper, we first review the basic knowledge of general relativity and point out that it is not easy
to use in the usual field equation formalism. We want to use the spherical symmetry to find the solution
of point source model in D 4 1 dimension. Because of the spherical symmetry, the metric only has two
degrees of freedom, o and f. Notice that the split of the time component and the spatial component can
help us investigate the geometry by studying the geometric properties restricting on the hypersurface 3; of
constant time t. Such a hypersurface is conformal to the Euclidean space, which helps us find the general
formula of the Ricci scalar. This inspires us to develop a new formalism of general relativity by splitting the
time and space and use Hamiltonian to describe the system. We emphasises that though ADM formalism
is well-known, usually this formalism is set to be in the 3+1 spacetime. We are the first one to write down
everything in detail under D + 1 dimension, carefully fixing the coefficients. ADM formalism is useful for
it is similar to what we do in classical mechanics. It might help us in the searching of the way to quantize
gravity.

After constructing the D + 1 dimensional ADM formalism, we couple this formalism with the matter

field. Also, we assume the source is just the static massive particle to make further progress. We finally get
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Figure 2: Plots of the numerical solution of the ODEs 1)
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the general solution of the differential equations, consistent with the Schwarzschild solutions in arbitrary
dimension. This provide a new track to obtain the Schwarzschild solution.

2+1 D gravity is special and we find the root reason: the form of the differential equation (or the Ricci
scalar) changes greatly. We show that the gravitational effect highly relates to the topological property of
the spacetime manifold again. In the section |5 we discuss its speciality by computing N particle solution
and geodesics. In modern theoretical physics, an important topic is the AdS/CFT correspondence and one
important example is AdS3 corresponds to the CFTs. This study of three dimensional gravity will give us

intuition towards the physics in the research.
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A Linearized gravity and dynamical degrees of freedom of in Einstein

gravity

One important thing is that in three dimensional model, there is no physical degrees of freedom of the
metric. One way to prove this claim is to see the linearized approximation, which will dynamically trivial.
The linearized approximation is g,, = 7 + hyu. Here we go through the details of this linearization

process for completeness. The Einstein field equation for arbitrary dimension is
1
Rab — iRgab = KTab (A.l)
Variate both two sides of the equation about the metric, we have
1 1
5Rab - 5(5R)gab - §R59ab = K(STab (A2)
Consider it terms by terms, first

R d()‘) - Rabcd = QV[GLCdb]c(A) - 2Cb[a|e\ ()‘)Ceb}c(k) (A3)

abc
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where

1
Cu(A) = —59“1()\) [Vagba(A) + Vigaa(A) — Vagap(A)] (A.4)
Using the notation
dgap(N)
5gab - <A5)
ax |
Then iR
ac b
5Rac = X = QV[aéC ble (A 6)
A=0
dCcc (A 1
0C %, = () = —=[Vadgpa + V09da — VEgap] (A7)
d\ =0
Because Vqg5.(0) = 0,
1
5Rac = §gbd [vbvaégcd + vacégad - vbvd(sgac - vavc(sgbd] (AS)
6R =6 ("' Ra) = (09" Rap + 9" Ry (A.9)
59" = —g"g"*6 gba (A.10)
we have
20Gap = — Ohgp + Rachy® + Rych,© — 2R, 540 + Ohgay + Va Vel (A1)

+ Vo Veh,® — VaVih — VVehagay + Rheagap — Rhap

where hgp = 0gap, h = ¢%®hgp. If we denote hgp = hap — %hgab, the equation is
20G ap = —Ohay+ Rachy+ Rychy,¢ —2 Rapeah 4V o V by S+ ViV h o — VeV Ry gap+ R ggap— Ry, (A12)
If we see the energy momentum tensor is the perturbation (The background is Minkowski space)
—Ohap+Rachy“+ Ryehy =2 Rapeah 4V o V oy 4V V by =V oV R g gab+ RN g gap— Rhgy, = 167 Ty, (A.13)

There are some gauge degrees of freedom in the perturbation, we could choose the so called Lorenz gauge:

Vohay =0 (A.14)
Then the equation simplifies to
— Ohay + Rachy® + Richy® — 2Rapeah™ + Rheqgap — Rhay = 167Ty, (A.15)
Now the background spacetime is Minkowski spacetime, Rqpeq == 0, V4 = J,. The equation reduces to
—Ohay = 1677 (A.16)
0%y =0 (A.17)

In general a symmetric real matrix has n(n+ 1)/2 degrees of freedom. The Lorentz gauge has n equations,

which kills n degrees of freedom. However, we still have residual gauge freedom compatible with the Lorenz
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gauge. Consider the transformation,
hav = hab + Va&o + Vi — (V) gab (A.18)
where £% satisfies
V4 Vabo + Visa = (Ve€)gab) = V*Valp + Vo Vil = Vi Vol = VIV + Ry =0 (A.19)

It is still compatible with Lorenz gauge. Then we would have extra n restriction. So the true degrees of
freedom is "2%3" Clearly if the n = 3, there is no degrees of freedom, which means that the metric is
dynamically trivial. If we want non trivial gravity dominated by Einstein field equation, we should consider

n < 4, the magic 4 is the lower bound of the dimension.

B Calculation supplementary

In this appendix we provide more details of the calculation, supplementing the argument in the paper.

B.1 ADM formalism

Lemma B.1. The determinant of the whole spacetime metric satisfy g = —ay, where 7 is the determinant
of Yij-

Proof: It is convenient to consider the determinant of the inverse metric det(g) , the determinant

_ 1
T det(g71)
of the inverse metric is

-5 5
i (B.1)
F 2

where the 5 represents the vector (3!, 32,...,8™)T. For i-th row, we times 3° of the 0-th row and add to

it, which doesn’t change the determinant, and it reduces to

1 g7 1
- = ol
F o =

which proves that ¢ = —a?.
Calculation Detail B.1. The Hamiltonian density is
Hrpy = 735 — Lapu

= V7 [KV7 — K7 (—2aK;; + ViB; + V;B;) — ay/y [KUKU - K*+ (D)R}

. . . , (B.3)
=7 [—a (<D>R v K2 Kl-jK”> 42 (Kyji . Kﬂivjﬁl)]
=7 [a (PR + K? - KyK') + 28/(ViK = V,K7,)| + 27V, (K8 - K787) |
Calculation Detail B.2. The variation with respect to © of Cy is
6Co 5<D/>7{ 0K b 0K ap (B.4)
= = — 2K — — 2K —— :
omii i + o omis
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since there is no dependence of 7 is P)R. Recall that 2% = ’y"b‘”{“b we have
o omd ?

0Co b b Yab"Vij
2K~ — ofab) — ((Jebdi o
o ( )ﬁ D—1 e
1 (2K V“b%b% 2K~
— \/» ( — 2K~y — D—i + 2K (B5)
1 2K i
= — (oK — =)
VY D-1

Calculation Detail B.3. Here we show all the detail of the variation
ij s (D a c ac
vI§PR,; = V. (7 bSTC, — 5rgb) . (B.6)

In order to compute it, we need the variation of the Christoffel symbol. We could evaluate this value in
the following way. For arbitrary point xg, in its Riemannian normal coordinate, the Christoffel symbol

vanishes at this specific point, its variation is just
ol'gy = %77“1 (0a09db + O0Gad — OadGab) (B.7)
where 1% is the inverse of Minkowski metric. Recovering the tensorial notation, we have
TS = 50 (Vadgas + Vidgas — Vadgus) (B.8)
Now using our notation, we have
oG, = %VCd (Vadvap + Vo6Yad — Vadvab) - (B.9)
The variation with respect to v;; of the last term in the equation
— / a\f’y”é R de = —/E ay/YVe (’yab(Sng — 7“51“‘;,,) dPx
¢
= —LJ Ve [oz <7ab5F2b — fyacéFZb)} VydPx + /E Vo (7“”51“3,, — ’y“céng) VydPa (B.10)
¢ ¢
= —surface term+/

V.o (7ab5F3b - ’yaccsf‘zb) VydPx
3t

At the boundary surface, the variation 6v;; vanishes, which means that we could drop the surface term.

This trick will be applied several times in the following calculations. The factor in the integral is
b5TE, — A6l = 42 Lo (75 Vobvad — Vi) — 1% 42 (Vb VoVad — Vad
Y*70T G, — 70T g = v -7 (VadVab + VedVad — Vadvan) — 757" (Vad¥ab + Vb0Vad — Vadvap)

B 5 2 (B.11)
ab,_ cd ac, bd
=3 (7 e — A%y ) (Va0vap + V6vad — Vadyap) 5
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Combining it with the other factor, we have

Ve (7‘”’5F2b - 7“C5F2b> = _V. (7‘”’7“[ - vac’vbd) (VadYab + V0Vad — Vadap)

N =N

=5 (79 = V*ar™) (Tadvas + Vodvas — Vadra)
= % [Vdavb(S'de + V2V 6y,0 — V4V (Y 5va)
VAV, (1) — VAV + vaavb(s%b}

= VaV’yy — ViaV, (VCdfs’ch)

=V (Veada) — (VPV9Q)0as — Va (V“a’yc‘ié%d> VoV (1 450) .

(B.12)
Again, the total derivative term could be ignored, simplified result is
Ve (yabérgb - yac(srgb) - [(vkvka)w - vjvia} i (B.13)
while the expression becomes
/ aﬁ’yij(S(D)Ridix = / V.o (’y“béf‘gb - ’y‘mész) VydPx
P Xy (B14)
= / VY {(Vkvkoz)'y” — V]V’oz] 5%di$.
p3M
We then finish the proof of the result .
Calculation Detail B.4. The details of the expression 18
(5/ QWijviﬁdi.%' = / (QWijvi,Bk(S’)/jk + Wijﬁlvl(S’yij) dDQ,’
Et 2t
. . 1 ..
= / Wk(JkaZ)57idil' —l—/ \F’le (W”ﬂl&m) dDiL‘
>t e VI (B.15)

1 ..
— [ VAV (\ﬁw”ﬁl) 5vi;dPx

p

= / QWk(ij,Bi)(S’yidiw - / Vl (’R’ijﬁl) (5%di$,
Et Et
where we ignore the surface term already and take the advantage of V;v = 0.

B.2 Couple to the matter field

Calculation Detail B.5. The detail of the expression is

Yij (¢7 + B7)
Va2 — (g + B (¢ + BI)

Yij (¢ + B87) (¢" + BY)
Va2 —i(d + (¢ + B7)
M>y9 (i + Bi) (g5 + By) o’ M? (B.16)
a? — i (" + B)(¢7 + B7) a? — (4" + BY)(¢7 + B7)

= Ly = (¢’ + 897 — ay/ynln] + M2
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Calculation Detail B.6. The energy momentum tensor that describes N particle moving in the spacetime

is derived as below. Consider the usual action for free particles in special relativity:

S = —m/\/—gu,,:i:/‘ab”ds (B.17)

where we choose the parameter is s. If we choose it as the proper time, it is S = —m [ ds. If we assume

that the particle trajectory is x*(s), we could rewrite the integral as

S = —m/dT\/—gM,,x'“:b’//dsé(”)(x“ —zt(s)) (B.18)

The Lagrangian density is
L = dsmy/—gu, THEv W (2t — 2h(s)) (B.19)

Using the formula

oo _ 2 02 (B.20)

V4 6g;w

The energy momentum tensor of a point particle actually is

(e = [ ORI ) (B.21)

where Y*(7) is the trajectory of the particle. Using the coordinate time and separate the delta function as

time component and spatial component

m dy* dr

. d’)/y
THY AR / / _ "\ 5(D) _ B.22
(t.0") = [ = o) G ot = 105t =) G (e )ar (B.22)
Finishing the integral and notice that there is a delta function,
om dvy®  dyY
T (t,a') = — ()= (0P ("~ (1)) (B.23)

V—g(xtt) dr

Using the condition that the particles stay at rest, the only non zero energy momentum tensor is

700 _ 5P 2y = ——5P) (%) (B.24)

C Properties of the Laplace operator

Theorem C.1. The Green function of the operator —A +m? (in the D dimensional Euclidean space) ,

which satisfies

(A +m?) G(,7) = AdP)(T - 7), (C.1)
G(r) = (27:)4,3/2 (%>D/2—1 Kpja_i(mr), (C.2)

where r = |& — &'| and K, (z) is the modified Bessel function of the second kind.

Proof: It is easy to see that the solution is rotational invariant (only relates to the relative distance r).
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The equation reduces to

1 0 _10G o(r
o rD—lE (rD la,,,) +m2G(T) = AQDE“D)_l ) (Cg)

D—-1

where the factor Qpr comes from the volume element dV = QprP—1dr. Integrate both sides of the

equation over a spherical volume centered at the origin with radius r, then take the limit as r — 0, this

yields
oG A
. p—19& ) A4
}1—1}(1) [r Gr} Qp - (C4)
The homogeneous equation of G is
1 0 _,0G
If we set G(r) = g(r)r~(P/2=D | the equation becomes
o%f  8f (D 2
2V J A e | o202 . .
8r2+r8r (2 )f mr‘f =0 (C.6)
This is a standard ODE and its solution is
f(r)=CKpjo_1(mr)+ DIps_y(mr), (C.7)

where Ip/,_1 and Kp/p_1 are modified Bessel functions of the first and second kind and C, D are constants
determined by boundary conditions. A natural boundary is that lim, .+, G = 0, which requires that D = 0.
So

C
G(?”) = WKD/Q_l(mr) . (CS)
Using the condition when r» — 0, we have
oG D\ .p D A
. D1 nd sl 1-5~_ _ =
}g%[r 87“] F<2>22 m~2C a, (C.9)

where we use the approximate form of Kp/,_1(mr) near r = 0. This implies

AmD/2-1
C = m : (C.10)
2D/2-11(D/2)Qp
with Qg = 27P/2/T'(D/2) we have
AmD/Qfl
The solution is A b
m\ 71
Theorem C.2. The Green’s function of the operator —A, which satisfies
—~AG =A@ -7, (C.13)
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18

/2— D _
G(r) = lim G(r) = le( )D/er(D/H<2>D21:AF(IQ)1) (C.14)

m—0 (27)P/2 m—0 2 mr 4gDpD—2

Proof: This is direct since we already had the general Green function for operator —A + m?.

D Proof of the solution

To verify it, we substitute it into the equation First

1 QDAQ _ 1 QDA - D/23 7‘0D72
TD*187“T 8Tf_rD*18rr D — 2f or 1+TD*2

D-2 (D.1)

_ =2 afPPofT " —2 Jt . arPrg ™ 5O ()

- D-2 Or or D — (D/2—1)
= o T Dy p (Y 2+716”DT° FPIH60) (7 (D2)
D19 or (D/2-1) '
where the first term cancels the first derivative part exactly. What we left is the term
167P(D — 1) 2 .

( )T F1=D/25(D) (7). (D.3)

T(D/2- 1)

At first glance it is not equal to the delta function in the right hand side (the factor f1=?/2). Let’s consider

it carefully. Using the specific form of f, we obtain

167°(D — 1)rd 2 N (o)
T(D/2—1) 1+ D3 ON(F) . (D.4)
The unexpected term is
5(D)(F)
PR (D.5)

Recall that we should define the delta function as a functional. Inner product with arbitrary function
¢:RP 5 Ris

1
(TD_Qé(D) (), ¢) : (D.6)
The expression 6(P)(7) /rP~2 is proportional to
1 1
77"D—2A77“D—2 . (D.7)
Let’s consider \
T 1
A = [N+ A2-D)] P D.8
B3 = A2 D P (03)
Analytically continued to A = —(D — 2), we could rewrite the expression
1 1 1
A——s=A—-——2(D—2)% P2 =2(2 - D)? —2(D —2)%72Pt2 =, (D.9)

rD—27 D2 r2D—14 r2D—2

27



So we indeed find the solution f for the equation (4.10]).

28
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